Abstract
In this paper, we introduce a sequent calculus CIRC for propositional Circumscription. This work is part of a larger project, aiming at a uniform proof-theoretic reconstruction of the major families of non-monotonic logics. Among the novelties of the calculus, we mention that CIRC is analytic and comprises an axiomatic rejection method, which allows for a fully detailed formalization of the nonmonotonic aspects of inference.
We mention the semantics of negation in logic programming, inheritance in object oriented languages, and the structured operational semantics of process algebras (transition system specifications with negative premisses).
Recall that one of the original motivations of Reiter's Default Logic is modelling default values in databases.
From Levesque's system, Jiang [17] derived a resolution principle for clausal autoepistemic theories.
Preview
Unable to display preview. Download preview PDF.
References
G. Amati, L. Carlucci Aiello, D. Gabbay, F. Pirri. A proof theoretical approach to default reasoning I: tableaux for default logic. Journal of Logic and Computation, 6(2):205–231, 1996.
C. Bell, A. Nerode, R. Ng and V.S. Subrahmanian. Implementing stable semantics by linear programming. In [38].
A. Bochman. On the relation between default and modal consequence relations. In Proc. of KR'94, 63–74, Morgan Kaufmann, 1994.
P.A. Bonatti. Sequent calculi for default and autoepistemic logics. In Proc. of TABLEA UX'96, LNAI 1071, pp. 127–142, Springer-Verlag, Berlin, 1996.
P.A. Bonatti. Autoepistemic logic programming. Journal of Automated Reasoning, 13:35–67, 1994.
P.A. Bonatti. A Gentzen system for non-theorems. Technical Report CD-TR 93/52, Christian Doppler Labor für Expertensysteme, Technische Universität, Wien, September 1993.
P.A. Bonatti, N. Olivetti. A sequent calculus for skeptical default logic. In Proc. of TABLEAUX'97, LNAI 1227, pp. 107–121, 1997.
G. Brewka. Cumulative default logic: in defense of nonmonotonic inference rules. Artificial Intelligence 50:183–205, 1991.
M. Cadoli, T. Eiter, G. Gottlob. An efficient method for eliminating varying predicates from a circumscription. Art. Int., 54:397–410, 1992.
X. Caicedo. A formal system for the non-theorems of the propositional calculus. Notre Dame Journal of Formal Logic, 19:147–151, (1978).
R. Dutkiewicz. The method of axiomatic rejection for the intuitionistic propositional calculus. Studia Logica, 48:449–459, (1989).
U. Egly, H. Tompits. Non-elementary speed-ups in default reasoning. In Proceedings ECSQARU-FAPR'97, LNAI 1244, pp. 237–251, 1997.
T. Eiter, G. Gottlob. Propositional Circumscription and Extended Closed World Reasoning are π 2 inp -complete. TCS, 114:231–245, 1993.
D. Gabbay et al. (eds). Handbook of Logic in Artificial Intelligence and Logic Programming, Vol.III, Clarendon Press, Oxford, 1994.
D. Gabbay. Theoretical foundations for non-monotonic reasoning in expert systems. In K.R. Apt (ed.) Logics and Models of Concurrent Systems. Springer-Verlag, Berlin, 1985.
M.L. Ginsberg. A circumscriptive theorem prover. Artificial Intelligence, 39(2):209–230, (1989).
Y.J. Jiang. A first step towards autoepistemic logic programming. Computers and Artificial Intelligence, 10(5):419–441, (1992).
P.G. Kolaitis, C.H. Papadimitriou. Some Computational Aspects of Circumscription. JACM, 37:1–14, 1990.
K. Konolige. On the Relationship between Default and Autoepistemic Logic. Artificial Intelligence, 35:343–382, 1988. + Errata, same journal, 41:115, 1989/90.
K. Konolige. On the Relation Between Autoepistemic Logic and Circumscription. In Proceedings IJCAI-89, 1989.
S. Kraus, D. Lehmarm and M. Magidor. Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44(1):167–207, (1990).
P. Kuhna. Circumscription and minimal models for propositional logics. In Proc. of the First Workshop on Theorem Proving with Analytic Tableaux and Related Methods, Marseille, 1993.
H.J. Levesque. All I know: a study in autoepistemic logic. Artificial Intelligence, 42:263–309, (1990).
V. Lifschitz. Computing Circumscription. Proc. of IJCAI'85, 121–127, 1985.
J. Lukasiewicz. Aristotle's syllogistic from the standpoint of modern formal logic. Clarendon Press, Oxford, 1951.
W. Lukaszewicz. Non-Monotonic Reasoning. Ellis Horwood Limited, Chichester, England, 1990.
J. McCarthy. Applications of circumscription in formalizing common sense knowledge. Artificial Intelligence, 28:89–116, 1986.
D. Makinson. General theory of cumulative inference. In M. Reinfrank, J. De Kleer, M.L. Ginsberg and E. Sandewall (eds.) Non-monotonic Reasoning, LNAI 346, Springer-Verlag, Berlin, 1989, 1–18.
W. Marek, A. Nerode, M. Truszczyński (eds).Logic Programming and Nonmonotonic Reasoning: Proc. of the Third Int. Conference. LNAI 928, Springer-Verlag, Berlin, 1995.
W. Marek, M. Truszczyński. Nonmonotonic Logics-Context-Dependent Reasoning. Springer, 1993.
W. Marek, M. Truszczyński. Computing intersections of autoepistemic expansions. In [33].
M.A. Nait Abdallah. An extended framework for default reasoning. In Proc. of FCT'89, LNCS 380, 339–348, Springer-Verlag, 1989.
A. Nerode, W. Marek, V.S. Subrahmanian (eds.). Logic Programming and Nonmonotonic Reasoning: Proc. of the First Int. Workshop, MIT Press, Cambridge, Massachusetts, 1991.
I. Niemelä. Decision procedures for autoepistemic logic. Proc. LADE-88, LNCS 310, Springer-Verlag, 1988.
I. Niemelä. {cA tableau calculus for minimal model reasoning}. In Proc, of TABLEA UX'96, LNAI 1071, pp. 278–294, Springer-Verlag, Berlin, 1996.
I. Niemelä. Implementing circumscription using a tableau method. In Proc. of ECAI, John Wiley & Sons, Ltd., 1996.
N. Olivetti. Tableaux and sequent calculus for minimal entailment. Journal of Automated Reasoning, 9:99–139, (1992).
L. M. Pereira, A. Nerode (eds.). Logic Programming and Non-monotonic Reasoning: Proc. of the Second Int. Workshop, MIT Press, Cambridge, Massachusetts, 1993.
T. Przymusinski. An algorithm to compute circumscription. Art. Int., 38:49–73, 1989.
R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, (1980).
V. Risch, C.B. Schwind. Tableau-based characterization and theorem proving for default logic. Journal of Automated Reasoning, 13:223–242, 1994.
J. Schlipf. Decidability and Defmability with Circumscription. Annals of Pure and Applied Logics, 35:173–191, 1987.
D. Scott. Completeness proofs for the intuitionistic sentential calculus. Summaries of Talks Presented at the Summer Institute for Symbolic Logic (Itaha, Cornell University, July 1957), Princeton: Institute for Defense Analyses, Communications Research Division, 1957, 231–242.
J. Slupecki, G. Bryll, U. Wybraniec-Skardowska. Theory of rejected propositions. Studia Logica, 29:75–115, (1971).
M. Tiomkin. Proving unprovability. In Proc. of LICS'88, 1988.
A. Varzi. Complementary sentential logics. Bulletin of the Section of Logic, 19:112–116, (1990).
L.Y. Yuan, C.H. Wang. On reducing parallel circumscription. Proc. of AAAI'88, 460–464, 1988.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bonatti, P.A., Olivetti, N. (1998). A sequent calculus for circumscription. In: Nielsen, M., Thomas, W. (eds) Computer Science Logic. CSL 1997. Lecture Notes in Computer Science, vol 1414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028009
Download citation
DOI: https://doi.org/10.1007/BFb0028009
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64570-2
Online ISBN: 978-3-540-69353-6
eBook Packages: Springer Book Archive