Minimal elimination ordering inside a given chordal graph | SpringerLink
Skip to main content

Minimal elimination ordering inside a given chordal graph

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1335))

Included in the following conference series:

  • 178 Accesses

Abstract

We consider the following problem, called Relative Minimal Elimination Ordering. Given a graph G = (V, E) which is a subgraph of the chordal graph G′ = (V, E′); compute an inclusion minimal chordal graph G" = (V, E"), such that \(E \subseteq E'' \subseteq E'\). We show that this can be done in O(nm) time. This extends the results of [2]. The algorithm is also simpler and is based only on well known results on chordal graphs.

e-mail: dahlhaus@informatik.uni-koeln.de

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. A. Agrawal, P. Klein, R. Ravi, Cutting Down on Fill-in Using Nested Dissection, in Sparse Matrix Computations: Graph Theory Issues and Algorithms, A. George, J. Gilbert, J.W.-H. Liu ed., IMA Volumes in Mathematics and its Applications, Vol. 56, Springer Verlag, 1993, pp. 31–55.

    Google Scholar 

  2. J. Blair, P. Heggernes, J.A. Telle, Making an Arbitrary Filled Graph Minimal by Removing Fill Edges, Algorithm Theory.-SWAT96, R. Karlsson, A. Lingas ed., LLNCS 1097, pp. 173–184.

    Google Scholar 

  3. P. Bunemann, A Characterization of Rigid Circuit Graphs, Discrete Mathematics 9 (1974), pp. 205–212.

    Google Scholar 

  4. E. Dahlhaus, Fast parallel algorithm for the single link heuristics of hierarchical clustering, Proceedings of the fourth IEEE Symposium on Parallel and Distributed Processing (1992), pp. 184–186.

    Google Scholar 

  5. E. Dahlhaus, Efficient Parallel Algorithms on Chordal Graphs with a Sparse Tree Representation, Proceedings of the 27-th Annual Hawaii International Conference on System Sciences, Vol. II (1994), pp. 150–158.

    Google Scholar 

  6. Elias Dahlhaus, Sequential and Parallel Algorithms on Compactly Represented Chordal and Strongly Chordal Graphs, STAGS 97, R. Reischuk, M. Morvan ed., LLNCS 1200 (1997), pp. 487–498.

    Google Scholar 

  7. Elias Dahlhaus, Marek Karpinski, An Efficient Parallel Algorithm for the Minimal Elimination Ordering (MEO) of an Arbitrary Graph, Theoretical Computer Science 134 (1994), pp. 493–528.

    Google Scholar 

  8. M. Farber, Characterizations of Strongly Chordal Graphs, Discrete Mathematics 43 (1983), pp. 173–189.

    Google Scholar 

  9. F. Gavril, The Intersection Graphs of Subtrees in Trees Are Exactly the Chordal Graphs, Journal of Combinatorial Theory Series B, vol. 16 (1974), pp. 47–56.

    Google Scholar 

  10. A. George, J.W.-H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice Hall Inc., Englewood Cliffs, NJ, 1981.

    Google Scholar 

  11. J. Gilbert, H. Hafsteinsson, Parallel Solution of Sparse Linear Systems, SWAT 88

    Google Scholar 

  12. D. Rose, Triangulated Graphs and the Elimination Process, Journal of Mathematical Analysis and Applications 32 (1970), pp. 597–609.

    Google Scholar 

  13. D. Rose, R. Tarjan, G. Lueker, Algorithmic Aspects on Vertex Elimination on Graphs, SIAM Journal on Computing 5 (1976), pp. 266–283.

    Google Scholar 

  14. Y. Shiloach, U. Vishkin, An O(log n) Parallel Connectivity Algorithm, Journal of Algorithms 3 (1982), pp. 57–67.

    Google Scholar 

  15. R. Tarjan, Efficiency of a Good but not Linear Set Union Algorithm, Journal of the ACM 22 (1975), pp. 215–225.

    Google Scholar 

  16. R. Tarjan, M. Yannakakis, Simple Linear Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs, SIAM Journal on Computing 13 (1984), pp. 566–579.

    Google Scholar 

  17. Addendum: SIAM Journal on Computing 14 (1985), pp. 254–255.

    Google Scholar 

  18. M. Yannakakis, Computing the Minimum Fill-in is NP-complete, SIAM Journal on Algebraic and Discrete Methods 2 (1981), pp. 77–79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rolf H. Möhring

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dahlhaus, D. (1997). Minimal elimination ordering inside a given chordal graph. In: Möhring, R.H. (eds) Graph-Theoretic Concepts in Computer Science. WG 1997. Lecture Notes in Computer Science, vol 1335. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0024494

Download citation

  • DOI: https://doi.org/10.1007/BFb0024494

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63757-8

  • Online ISBN: 978-3-540-69643-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics