A decidability result about convex polyominoes | SpringerLink
Skip to main content

A decidability result about convex polyominoes

  • Conference paper
  • First Online:
LATIN '92 (LATIN 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 583))

Included in the following conference series:

Abstract

A polyomino contour can be represented as a word over a four letter alphabet A. Each letter induces a unit line pointing one of the four directions (right, left, up and down). According to[b], checking whether a rational language R⊂A* contains a polyomino contour word is undecidable. We restrict the problem to convex polyominoes and we prove that, in this case, the problem turns out to be decidable.

This work was partially supported by the Esprit Basic Research Action Working Group N∘3166 ASMICS and the PRC Mathématiques et Informatiques.

The authors thank the referees for their useful comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Beauquier, A Undecidable Problem about Rational Sets and Contour Words of Polyominoes, Information Processing Letters 37 (1991), 257–263.

    Google Scholar 

  2. R. Berger, The undecidability of the domino problem, Memoirs Amer. Math. Soc. 66 (1966), 72.

    Google Scholar 

  3. D. Beauquier, M. Latteux, K. Slowinski, A decidability result about convex polyominoes, Technical Report I.T. 214 (1991), University of Lille, France.

    Google Scholar 

  4. D. Beauquier, M. Nivat, On translating one polyomino to tile the plane, Discrete and Computational Geometry, to appear.

    Google Scholar 

  5. J. Dassow, Convexity and Simplicity of Chain Code Picture Languages, Rostock. Math. Kolloq. 34 (1988), 53–60.

    Google Scholar 

  6. J. Dassow, Graph-theoretical Properties and Chain Code Picture Languages, J. Inf. Process. Cybern. EIK25 (1989), 423–433.

    Google Scholar 

  7. J. Dassow, F. Hinz, Decision Problems and Regular Chain Code Picture Languages, to appear in Discrete Applied Mathematics.

    Google Scholar 

  8. M.P. Delest and G. Viennot, Algebraic Languages and Polyominoes enumeration, Theoretical Computer Science 34 (1984), 169–206.

    Google Scholar 

  9. D. Ellard, Poyominoes and Enumeration, Math. Gazette 66 (1982), 130–314.

    Google Scholar 

  10. S.W. Golomb, Polyominoes, Georges Allen and Unwin Ltd (London, 1966).

    Google Scholar 

  11. S.W. Golomb, Tiling with sets of Polyominoes, S. Combinatorial Theory 9 (1970), 60–71.

    Google Scholar 

  12. B. Grünbaum, G.C. Shephard, Tilings and Patterns, Freeman & Company (New York, 1986).

    Google Scholar 

  13. J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley (Reading MA, 1979).

    Google Scholar 

  14. M. Jantzen, Confluent string rewriting, EATCS Monog. on T.C.S. 14 (Springer-Verlag, 1988).

    Google Scholar 

  15. J.E. Pin, Variétés de langages formels, Masson (1984).

    Google Scholar 

  16. R.M. Robinson, Undecidability and non Periodicity of Tilings of the Plane, Inventione Math. 12 (1971), 177–209.

    Google Scholar 

  17. H.D. Shapiro, Theorical limitations on the efficient user of parallel memories, I.E.E. Trans. Computing (1978).

    Google Scholar 

  18. K. Slowinski, Systèmes de réécriture et langages de mots de figure, Ph. D. Thesis (1992), University of Lille, France.

    Google Scholar 

  19. H. Wang, Notes on a class of tiling problems, Fundam. Mathematics 82 (1975), 295–305.

    Google Scholar 

  20. H.A.G. Wiljshoff, J. Van Leeuwen, Periodic versus arbitrary tessellations of the plane using polyominoes of a single type, Inf. Control 62 (1984), 1–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Imre Simon

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beauquier, D., Latteux, M., Slowinski, K. (1992). A decidability result about convex polyominoes. In: Simon, I. (eds) LATIN '92. LATIN 1992. Lecture Notes in Computer Science, vol 583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0023815

Download citation

  • DOI: https://doi.org/10.1007/BFb0023815

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55284-0

  • Online ISBN: 978-3-540-47012-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics