An observational subset of first-order logic cannot specify the behaviour of a counter (extended abstract) | SpringerLink
Skip to main content

An observational subset of first-order logic cannot specify the behaviour of a counter (extended abstract)

  • Semantics
  • Conference paper
  • First Online:
STACS 91 (STACS 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 480))

Included in the following conference series:

Abstract

An “observational” specification language for abstract data types is one that allows only observable aspects of a type to be specified. An observational sublanguage of first-order logic must not contain equations between values of hidden sorts. It is shown that in such a sublanguage the behaviour of a simple counter data type cannot be finitely specified. This implies that more than first-order logic is needed for a useful observational specification language, and that more than first-order logic or a stronger proof rule than previously proposed is needed to work with nonstandard “behavioural” semantics of specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jon Barwise, editor. Handbook of Mathematical Logic. Number 90 in Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam et al., 1977.

    Google Scholar 

  2. Klaus Bothe. A comparative study of abstract data type concepts. Elektronische Informationsverarbeitung und Kybernetik, 17:237–257, 1981.

    Google Scholar 

  3. V. Giarratana, F. Gimona, and U. Montanari. Observability concepts in abstract data type specification. In A. Mazurkiewicz, editor, Mathematical Foundations of Computer Science 1976, number 45 in LNCS, pages 576–587, Gdańsk, Poland, 1976. Springer.

    Google Scholar 

  4. John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, Mass. et al., 1979.

    Google Scholar 

  5. Marek Karpinski, editor. Foundations of Computation Theory, number 158 in LNCS, Borgholm, Sweden, 1983. Springer.

    Google Scholar 

  6. Barbara H. Liskov and Stephen N. Zilles. Specification techniques for data abstractions. IEEE Transactions on Software Engineering, SE-1:7–19, 1975.

    Google Scholar 

  7. G. Mirkowska and A. Salwicki. Algorithmic Logic. D. Reidel, Dordrecht et al., 1987. Also published by PWN—Polish Scientific Publishers, Warsaw.

    Google Scholar 

  8. D. L. Parnas. A technique for software module specification with examples. Communications of the ACM, 15:330–336, 1972.

    Article  Google Scholar 

  9. Horst Reichel. Behavioural validity of conditional equations in abstract data types. In Contributions to General Algebra 3. Proceedings ... 1984, pages 301–324. Hölder-Pichler-Tempsky, Vienna, 1985. Also published by B. G. Teubner, Stuttgart.

    Google Scholar 

  10. Oliver Schoett. Ein Modulkonzept in der Theorie Abstrakter Datentypen. Bericht 81, Fachbereich Informatik, Universität Hamburg, August 1981.

    Google Scholar 

  11. Oliver Schoett. Behavioural correctness of data representations. Science of Computer Programming, 14:43–57, 1990.

    Article  Google Scholar 

  12. Donald Sannella and Andrzej Tarlecki. On observational equivalence and algebraic specification. Journal of Computer and System Sciences, 34:150–178, 1987.

    Article  Google Scholar 

  13. Donald Sannella and Andrzej Tarlecki. Toward formal development of programs from algebraic specifications: Implementations revisited. Acta Informatica, 25:233–281, 1988.

    Article  Google Scholar 

  14. Donald Sannella and Martin Wirsing. A kernel language for algebraic specification and implementation. Internal Report CSR-131-83, Department of Computer Science, University of Edinburgh, September 1983. Extended Abstract in [Kar83], p. 413–427.

    Google Scholar 

  15. J. W. Thatcher, E. G. Wagner, and J. B. Wright. Data type specification: Parameterization and the power of specification techniques. ACM Transactions on Programming Languages and Systems, 4:711–732, 1982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Choffrut Matthias Jantzen

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schoett, O. (1991). An observational subset of first-order logic cannot specify the behaviour of a counter (extended abstract). In: Choffrut, C., Jantzen, M. (eds) STACS 91. STACS 1991. Lecture Notes in Computer Science, vol 480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020824

Download citation

  • DOI: https://doi.org/10.1007/BFb0020824

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53709-0

  • Online ISBN: 978-3-540-47002-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics