Why sometimes probabilistic algorithms can be more effective | SpringerLink
Skip to main content

Why sometimes probabilistic algorithms can be more effective

  • Invited Lectures
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1986 (MFCS 1986)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 233))

  • 154 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.M.Ablaev, On the problem of reduction of automata, Izvestija VUZ. Matematika, 1980, No.3, 75–77 (Russian).

    Google Scholar 

  2. F.M.Ablaev, Capabilities of probabilistic machines to represent languages in real time, Izvestija VUZ. Matematika, 1985, No.7, 32–40 (Russian).

    Google Scholar 

  3. J.M. Barzdin, Complexity of recognition of palindromes by Turing machines, Problemy kibernetiki, v.15, Moscow, Nauka, 1965, 245–248 (Russian).

    Google Scholar 

  4. J.M. Barzdin, On computability by probabilistic machines, Doklady AN SSSR, 1969, v.189, No.4, 699–702 (Russian).

    Google Scholar 

  5. R.G. Bukharaev, Foundations of the theory of probabilistic automata, Moscow, Nauka, 1985.

    Google Scholar 

  6. W. Feller, An introduction to probability theory and its applications, v.1, New York et al., John Wiley, 1957.

    Google Scholar 

  7. R. Freivalds, Fast computation by probabilistic Turing machines, Ucenye Zapiski Latvijskogo Gosudarstvennogo Universiteta, 1975, v.233, 201–205 (Russian)

    Google Scholar 

  8. R.Freivalds, Probabilistic machines can use less running time, in: Information Processing '77, IFIP (North Holland, 1977), 839–842.

    Google Scholar 

  9. R. Freivalds, Language recognition with high probability by various classes of automata, Doklady AN SSSR, 1978, v.239, No.1, 60–62 (Russian).

    Google Scholar 

  10. R. Freivalds, Speeding of recognition of languages by usage of random number generators, Problemy kibernetiki, v.36, Moscow, Nauka, 1979, 209–224 (Russian).

    Google Scholar 

  11. R.Freivalds, Finite identification of general recursive functions by probabilistic strategies, Proc. Conference FCT, 1979, 138–145.

    Google Scholar 

  12. R.Freivalds, On principal capabilities of probabilistic algorithms in inductive inference, Semiotika i informatika, 1979, No.12, 137–140 (Russian).

    Google Scholar 

  13. R.Freivalds, A probabilistic reducibility of sets, Proc. USSR Conference on Mathematical Logics, 1979, 137 (Russian).

    Google Scholar 

  14. R. Freivalds, Probabilistic two-way machines, Lecture Notes in Computer Science, Springer, 1981, v.118, 33–45.

    Google Scholar 

  15. R.Freivalds, Capabilities of various models of probabilistic one-way automata, Izvestija VUZ. Matematika, 1981, No.5, 26–34 (Russian).

    Google Scholar 

  16. R. Freivalds, Characterization of capabilities of the simplest method for proving the advantages of probabilistic automata over deterministic ones, Latvijskij matematiceskij ezegodnik, 1983, v.27, 241–251 (Russian).

    Google Scholar 

  17. R. Freivalds, Advantages of probabilistic 3-head finite automata over deterministic multi-head ones, Latvijskij matematiceskij ezegodnik, 1985, v.29, 155–163 (Russian).

    Google Scholar 

  18. A.V. Gladkij, Formal grammars and languages, Moscow, Nauka, 1973.

    Google Scholar 

  19. E.M. Gold, Language identification in the limit, Information and Control, 1967, v.10, 447–474.

    Google Scholar 

  20. K. de Leeuw, E.F.Moore, C.E.Shannon and N.Shapiro, Computability by probabilistic machines, Automata Studies, Princeton University Press, 1956, 183–212.

    Google Scholar 

  21. N.R.Nigmatullin, Towards the problem of reduction of ω-automata, Verojatnostnye metodi i kibernetika, Kazan University Press, 1979, 61–67 (Russian).

    Google Scholar 

  22. L.Pitt, Probabilistic inductive inference, Yale University, YALEU /DCS/ TR-400, June 1985.

    Google Scholar 

  23. M.O. Rabin, Probabilistic automata, Information and Control, 1963, v.6, No.3, 230–245.

    Google Scholar 

  24. H. Rogers Jr., Theory of recursive functions and effective computability, New York, McGraw Hill, 1967.

    Google Scholar 

  25. R.E.Stearns, J.Hartmanis and P.M.Lewis II, Hierarchies of memory limited computation, Proc. IEEE Symposium on Switching Circuit Theory and Logical Design, 1965, 179–190.

    Google Scholar 

  26. P.Turakainen, On probabilistic automata and their generalizations, Suomalais, tiedenkat. toimituks., 1968, v.53.

    Google Scholar 

  27. A.V.Vaiser, Notes on complexity measures in probabilistic computations, in: Control systems, v.1, Tomsk University Press, 1975, 182–196 (Russian).

    Google Scholar 

  28. S.V.Yablonskiy, On lagorithmic difficulties in minimal circuit synthesis, Problemy kibernetiki, v.2, Moscow, Fizmatgiz, 75–121 (Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jozef Gruska Branislav Rovan Juraj Wiedermann

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ablaev, F.M., Freivalds, R. (1986). Why sometimes probabilistic algorithms can be more effective. In: Gruska, J., Rovan, B., Wiedermann, J. (eds) Mathematical Foundations of Computer Science 1986. MFCS 1986. Lecture Notes in Computer Science, vol 233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0016230

Download citation

  • DOI: https://doi.org/10.1007/BFb0016230

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16783-9

  • Online ISBN: 978-3-540-39909-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics