Rational cones and commutations | SpringerLink
Skip to main content

Rational cones and commutations

  • Chapter 1 Languages
  • Conference paper
  • First Online:
Machines, Languages, and Complexity (IMYCS 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 381))

Included in the following conference series:

Abstract

This survey presents some results concerning total commutations, partial commutations and semi-commutations in connection with the families of rational and algebraic languages and more generaly with (faithful) rational cones.

This work has been partially supported by the Programme de Recherche Coordonnée "Mathématiques et Informatique" du Ministère de la Recherche et de la Technologie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IJ.J.Aalbersberg and G.Rozenberg, Theory of traces, Tech.Rep., University of Leiden, 1986.

    Google Scholar 

  2. IJ.J. Aalbersberg and E. Welzl, Trace languages defined by regular string languages, RAIRO Inform.Theor. 20(1986) 103–119.

    Google Scholar 

  3. J.M. Autebert, J. Beauquier, L. Boasson and M. Latteux, Very small families of languages, in R.V. Book,ed., Formal Language Theory, Perspective and Open Problems (Academic Press, New York,1980) 89–107.

    Google Scholar 

  4. J.M. Autebert, J. Beauquier, L. Boasson and M. Latteux, Languages algébriques dominés par des languages unaires, Information and Control 48(1981) 49–53.

    Google Scholar 

  5. J.Beauquier, M.Blattner and M.Latteux, On commutative context-free languages, J.of Comput. and Syst.Sc. 35(1987).

    Google Scholar 

  6. J.Berstel,Transductions and Context-Free Languages (Teubner,1979).

    Google Scholar 

  7. J. Berstel and J. Sakarovich, Recent results in the theory of rational sets, Lect.Notes in Comp.Sci. 233(1986) 15–28.

    Google Scholar 

  8. A.Bertoni, G.Mauri and N.Sabadini, Unambiguous regular trace languages, in J.Demetrovics, G.Katona and A.Salomaa, eds., Algebra, Combinatorics and Logic in Computer Science (North Holland, 1985).

    Google Scholar 

  9. M. Blattner and M. Latteux, Parikh-bounded languages, Lect.Notes in Comp.Sci. 115(1981) 316–323.

    Google Scholar 

  10. R.V. Book, S. Greibach and C. Wrathall, Reset machines, J.of Comput. and Syst.Sc. 19(1979) 256–276.

    Google Scholar 

  11. P.Cartier and D.Foata, Problèmes combinatoires de commutations et réarrangements, Lect. Notes in Math. 85(1969).

    Google Scholar 

  12. M.Clerbout, Commutations partielles et familles de langages, Thesis, University of Lille, 1984.

    Google Scholar 

  13. M.Clerbout, Compositions de fonctions de commutation partielle, to appear in RAIRO Inform.Theor., 1986.

    Google Scholar 

  14. M. Clerbout and M. Latteux, Partial commutations and faithful rational transductions, Theoretical Computer Science 34(1984) 241–254.

    Google Scholar 

  15. M.Clerbout and M.Latteux, On a generalization of partial commutations, in: M.Arato, I.Katai, L.Varga, eds, Proc.Fourth Hung. Computer Sci.Conf. (1985) 15–24.

    Google Scholar 

  16. M. Clerbout and M. Latteux, Semi-commutations, Information and Computation 73(1987) 59–74.

    Google Scholar 

  17. M.Clerbout and Y.Roos, Semi-communtations algebrico-rationnelles, Tech. Rep. no 126-88, University of Lille, 1988.

    Google Scholar 

  18. M.Clerbout and Y.Roos, Semi-commutations et languages algébriques, Tech.Rep. no 129-88, University of Lille, 1988.

    Google Scholar 

  19. R.Cori, Partially abelian monoids, Invited lecture, STACS, Orsay, 1986.

    Google Scholar 

  20. R.Cori, M.Latteux, Y.Roos and E.Sopena, 2-asynchronous automata, to appear in Theoretical Computer Science, 1987.

    Google Scholar 

  21. R. Cori and Y. Metivier, Recognizable subsets of partially abelian monoids, Theoretical Computer Science 38(1985) 179–189.

    Google Scholar 

  22. R. Cori and D. Perrin, Automates et commutations partielles, RAIRO Inform.Theor. 19(1985) 21–32.

    Google Scholar 

  23. C. Duboc, Some properties of commutation in free partially commutative monoids, Inform.Proc.Letters 20(1985) 1–4.

    Google Scholar 

  24. C.Duboc, Commutations dans les monoïdes libres: un cadre théorique pour l'étude du parallélisme, Thesis, University of Rouen, 1986.

    Google Scholar 

  25. A. Ehrenfeucht, D. Haussler and G. Rozenberg, Conditions enforcing regularity of context-free languages, Lect.Notes in Comp.Sci. 140(1982) 187–191.

    Google Scholar 

  26. S. Eilenberg and M.P. Schützenberger, Rational sets in commutative monoids, J. of Algebra 13(1969) 344–353.

    Google Scholar 

  27. S. Ginsburg, The Mathematical Theory of Context-Free Languages (McGraw-Hill, New York,1966).

    Google Scholar 

  28. S. Ginsburg, Algebraic and Automata-Theoretic Properties of Formal Languages (North Holland, Amsterdam, 1975).

    Google Scholar 

  29. S. Ginsburg and E.H. Spanier, Semigroups, Preburger formulas and languages, Pacif.J.Math. 16(1966) 285–296.

    Google Scholar 

  30. S. Ginsburg and E.H. Spanier, AFL with the semilinear property, J.of Comput. and Syst.Sc. 5(1971) 365–396.

    Google Scholar 

  31. Ph. Gohon, An algorithm to decide whether a rational subset of Nk is recognizable, Theoretical Computer Science 41(1985) 51–59.

    Google Scholar 

  32. A.K. Joshi and T. Yokomori, Semi-linearity,Parikh-boundedness and tree adjunct languages, Inform.Proc.Letters 17(1983) 137–143.

    Google Scholar 

  33. J. Kortelainen, On language families generated by commutative languages, Ph.D. Thesis, University of Oulu, 1982.

    Google Scholar 

  34. J. Kortelainen, A result concerning the trio generated by commutative slip-languages, Discrete Applied Mathematics 4(1982) 233–236.

    Google Scholar 

  35. J. Kortelainen, Every commutative quasirational language is regular, RAIRO Inform.Theor. 20(1986) 319–337.

    Google Scholar 

  36. J.Kortelainen, The conjecture of Fliess on commutative context-free languages,to appear, 1988.

    Google Scholar 

  37. M. Latteux, Cones rationnels commutativement clos, RAIRO Inform.Theor.11(1977) 29–51.

    Google Scholar 

  38. M. Latteux, cones rationnels commutatifs, J.of Comput. and Syst.Sc. 18(1979) 307–333.

    Google Scholar 

  39. M. Latteux, Languages commutatifs, transductions rationnelles et intersection, in M.Blab ed., Actes de l'école de printemps de théorie des langages (Tech.Rep.82-14, LITP, 1982) 235–242.

    Google Scholar 

  40. M. Latteux and J. Leguy, On the usefulness of bifaifhful rational cones, Math.Systems Theory 18(1985) 19–32.

    Google Scholar 

  41. M. Latteux and G. Rozenberg, Commutative one-couter languages are regular, J.of Comput. and Syst.Sc. 29(1984) 54–57.

    Google Scholar 

  42. M. Latteux and G. Thierrin, Codes and commutative star languages, Soochow J.of Math. 10(1984) 61–71.

    Google Scholar 

  43. H.A. Maurer, The solution of a problem by Ginsburg, Inform.Process.Lett. 1(1971) 7–10.

    Google Scholar 

  44. A.Mazurkiewicz, Concurrent program schemes and their interpretations, DAIMI PB 78, University of Aarhus, 1977.

    Google Scholar 

  45. A. Mazurkiewicz, Traces, histories and graphs: instances of process monoids, Lect.Notes in Comp.Sci. 176(1984) 115–133.

    Google Scholar 

  46. Y.Metivier, Semi commutations dans le monoïde libre,Tech. Rep. n0 I-8606, University of Bordeaux, 1986.

    Google Scholar 

  47. Y.Metivier, Contribution à l'étude des monoïdes de commutations,Thèse d'état,University of Bordeaux, 1987.

    Google Scholar 

  48. Y. Metivier, On recognizable subsets of free partially commutative monoids, Lect.Notes in Comp.Sci. 226(1986) 254–264.

    Google Scholar 

  49. E. Ochmanski, Regular behaviour of concurrent systems, Bulletin of EATCS 27(1985) 56–67.

    Google Scholar 

  50. T. Oshiba, On permutting letters of words in context-free languages, Information and Control 20(1972) 405–409.

    Google Scholar 

  51. D.Perrin, Words over a partially commutative alphabet, NATO ASI Series F12,Springer (1985) 329–340.

    Google Scholar 

  52. J.F. Perrot, Sur la fermeture commutative des C-langages, C.R.Acad.Sci.Paris 265(1967) 597–600.

    Google Scholar 

  53. A. Restivo and C. Reutenauer, Rational languages and the Burnside problem, Theoretical Computer Science 40(1985) 13–30.

    Google Scholar 

  54. Y.Roos, Virtually asynchronous automata, Conference on Automata, Languages and Programming Systems, Salgotarjan, 1988.

    Google Scholar 

  55. Y.Roos, Contribution à l'étude des fonctions de commutation partielle, Thesis, University of Lille, 1989.

    Google Scholar 

  56. B.Rozoy, Un modèle de parallélisme: le monoïde distribué, Thèse d'état, University of Caen, 1987.

    Google Scholar 

  57. J.Sakarovitch, On regular trace languages, to appear in RAIRO Inform.Theor.

    Google Scholar 

  58. A. Salomaa, Theory of Automata, (Pergamon Press, Oxford, 1969).

    Google Scholar 

  59. M.Szijarto, The closure of languages on a binary relation, IMYCS Conference, Smolenice,1982.

    Google Scholar 

  60. P. Turakainen, On some bounded semiAFLs and AFLs, Inform.Sci. 23(1981) 31–48.

    Google Scholar 

  61. W. Zielonka, Notes on asynchronous automata, RAIRO Inform.Theor. 21(1987) 99–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Dassow J. Kelemen

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Latteux, M. (1989). Rational cones and commutations. In: Dassow, J., Kelemen, J. (eds) Machines, Languages, and Complexity. IMYCS 1988. Lecture Notes in Computer Science, vol 381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015926

Download citation

  • DOI: https://doi.org/10.1007/BFb0015926

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51516-6

  • Online ISBN: 978-3-540-48203-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics