Abstract
This survey presents some results concerning total commutations, partial commutations and semi-commutations in connection with the families of rational and algebraic languages and more generaly with (faithful) rational cones.
This work has been partially supported by the Programme de Recherche Coordonnée "Mathématiques et Informatique" du Ministère de la Recherche et de la Technologie.
Preview
Unable to display preview. Download preview PDF.
References
IJ.J.Aalbersberg and G.Rozenberg, Theory of traces, Tech.Rep., University of Leiden, 1986.
IJ.J. Aalbersberg and E. Welzl, Trace languages defined by regular string languages, RAIRO Inform.Theor. 20(1986) 103–119.
J.M. Autebert, J. Beauquier, L. Boasson and M. Latteux, Very small families of languages, in R.V. Book,ed., Formal Language Theory, Perspective and Open Problems (Academic Press, New York,1980) 89–107.
J.M. Autebert, J. Beauquier, L. Boasson and M. Latteux, Languages algébriques dominés par des languages unaires, Information and Control 48(1981) 49–53.
J.Beauquier, M.Blattner and M.Latteux, On commutative context-free languages, J.of Comput. and Syst.Sc. 35(1987).
J.Berstel,Transductions and Context-Free Languages (Teubner,1979).
J. Berstel and J. Sakarovich, Recent results in the theory of rational sets, Lect.Notes in Comp.Sci. 233(1986) 15–28.
A.Bertoni, G.Mauri and N.Sabadini, Unambiguous regular trace languages, in J.Demetrovics, G.Katona and A.Salomaa, eds., Algebra, Combinatorics and Logic in Computer Science (North Holland, 1985).
M. Blattner and M. Latteux, Parikh-bounded languages, Lect.Notes in Comp.Sci. 115(1981) 316–323.
R.V. Book, S. Greibach and C. Wrathall, Reset machines, J.of Comput. and Syst.Sc. 19(1979) 256–276.
P.Cartier and D.Foata, Problèmes combinatoires de commutations et réarrangements, Lect. Notes in Math. 85(1969).
M.Clerbout, Commutations partielles et familles de langages, Thesis, University of Lille, 1984.
M.Clerbout, Compositions de fonctions de commutation partielle, to appear in RAIRO Inform.Theor., 1986.
M. Clerbout and M. Latteux, Partial commutations and faithful rational transductions, Theoretical Computer Science 34(1984) 241–254.
M.Clerbout and M.Latteux, On a generalization of partial commutations, in: M.Arato, I.Katai, L.Varga, eds, Proc.Fourth Hung. Computer Sci.Conf. (1985) 15–24.
M. Clerbout and M. Latteux, Semi-commutations, Information and Computation 73(1987) 59–74.
M.Clerbout and Y.Roos, Semi-communtations algebrico-rationnelles, Tech. Rep. no 126-88, University of Lille, 1988.
M.Clerbout and Y.Roos, Semi-commutations et languages algébriques, Tech.Rep. no 129-88, University of Lille, 1988.
R.Cori, Partially abelian monoids, Invited lecture, STACS, Orsay, 1986.
R.Cori, M.Latteux, Y.Roos and E.Sopena, 2-asynchronous automata, to appear in Theoretical Computer Science, 1987.
R. Cori and Y. Metivier, Recognizable subsets of partially abelian monoids, Theoretical Computer Science 38(1985) 179–189.
R. Cori and D. Perrin, Automates et commutations partielles, RAIRO Inform.Theor. 19(1985) 21–32.
C. Duboc, Some properties of commutation in free partially commutative monoids, Inform.Proc.Letters 20(1985) 1–4.
C.Duboc, Commutations dans les monoïdes libres: un cadre théorique pour l'étude du parallélisme, Thesis, University of Rouen, 1986.
A. Ehrenfeucht, D. Haussler and G. Rozenberg, Conditions enforcing regularity of context-free languages, Lect.Notes in Comp.Sci. 140(1982) 187–191.
S. Eilenberg and M.P. Schützenberger, Rational sets in commutative monoids, J. of Algebra 13(1969) 344–353.
S. Ginsburg, The Mathematical Theory of Context-Free Languages (McGraw-Hill, New York,1966).
S. Ginsburg, Algebraic and Automata-Theoretic Properties of Formal Languages (North Holland, Amsterdam, 1975).
S. Ginsburg and E.H. Spanier, Semigroups, Preburger formulas and languages, Pacif.J.Math. 16(1966) 285–296.
S. Ginsburg and E.H. Spanier, AFL with the semilinear property, J.of Comput. and Syst.Sc. 5(1971) 365–396.
Ph. Gohon, An algorithm to decide whether a rational subset of Nk is recognizable, Theoretical Computer Science 41(1985) 51–59.
A.K. Joshi and T. Yokomori, Semi-linearity,Parikh-boundedness and tree adjunct languages, Inform.Proc.Letters 17(1983) 137–143.
J. Kortelainen, On language families generated by commutative languages, Ph.D. Thesis, University of Oulu, 1982.
J. Kortelainen, A result concerning the trio generated by commutative slip-languages, Discrete Applied Mathematics 4(1982) 233–236.
J. Kortelainen, Every commutative quasirational language is regular, RAIRO Inform.Theor. 20(1986) 319–337.
J.Kortelainen, The conjecture of Fliess on commutative context-free languages,to appear, 1988.
M. Latteux, Cones rationnels commutativement clos, RAIRO Inform.Theor.11(1977) 29–51.
M. Latteux, cones rationnels commutatifs, J.of Comput. and Syst.Sc. 18(1979) 307–333.
M. Latteux, Languages commutatifs, transductions rationnelles et intersection, in M.Blab ed., Actes de l'école de printemps de théorie des langages (Tech.Rep.82-14, LITP, 1982) 235–242.
M. Latteux and J. Leguy, On the usefulness of bifaifhful rational cones, Math.Systems Theory 18(1985) 19–32.
M. Latteux and G. Rozenberg, Commutative one-couter languages are regular, J.of Comput. and Syst.Sc. 29(1984) 54–57.
M. Latteux and G. Thierrin, Codes and commutative star languages, Soochow J.of Math. 10(1984) 61–71.
H.A. Maurer, The solution of a problem by Ginsburg, Inform.Process.Lett. 1(1971) 7–10.
A.Mazurkiewicz, Concurrent program schemes and their interpretations, DAIMI PB 78, University of Aarhus, 1977.
A. Mazurkiewicz, Traces, histories and graphs: instances of process monoids, Lect.Notes in Comp.Sci. 176(1984) 115–133.
Y.Metivier, Semi commutations dans le monoïde libre,Tech. Rep. n0 I-8606, University of Bordeaux, 1986.
Y.Metivier, Contribution à l'étude des monoïdes de commutations,Thèse d'état,University of Bordeaux, 1987.
Y. Metivier, On recognizable subsets of free partially commutative monoids, Lect.Notes in Comp.Sci. 226(1986) 254–264.
E. Ochmanski, Regular behaviour of concurrent systems, Bulletin of EATCS 27(1985) 56–67.
T. Oshiba, On permutting letters of words in context-free languages, Information and Control 20(1972) 405–409.
D.Perrin, Words over a partially commutative alphabet, NATO ASI Series F12,Springer (1985) 329–340.
J.F. Perrot, Sur la fermeture commutative des C-langages, C.R.Acad.Sci.Paris 265(1967) 597–600.
A. Restivo and C. Reutenauer, Rational languages and the Burnside problem, Theoretical Computer Science 40(1985) 13–30.
Y.Roos, Virtually asynchronous automata, Conference on Automata, Languages and Programming Systems, Salgotarjan, 1988.
Y.Roos, Contribution à l'étude des fonctions de commutation partielle, Thesis, University of Lille, 1989.
B.Rozoy, Un modèle de parallélisme: le monoïde distribué, Thèse d'état, University of Caen, 1987.
J.Sakarovitch, On regular trace languages, to appear in RAIRO Inform.Theor.
A. Salomaa, Theory of Automata, (Pergamon Press, Oxford, 1969).
M.Szijarto, The closure of languages on a binary relation, IMYCS Conference, Smolenice,1982.
P. Turakainen, On some bounded semiAFLs and AFLs, Inform.Sci. 23(1981) 31–48.
W. Zielonka, Notes on asynchronous automata, RAIRO Inform.Theor. 21(1987) 99–135.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Latteux, M. (1989). Rational cones and commutations. In: Dassow, J., Kelemen, J. (eds) Machines, Languages, and Complexity. IMYCS 1988. Lecture Notes in Computer Science, vol 381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015926
Download citation
DOI: https://doi.org/10.1007/BFb0015926
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51516-6
Online ISBN: 978-3-540-48203-1
eBook Packages: Springer Book Archive