Abstract
The DiffServ’s Assured Forwarding (af) Per-Hop Behavior (phb) Group defines a differentiated forwarding of packets in four independent classes, each class having three levels of drop precedence. Specific end-to-end services based on thisphb are still being defined. A particular type of service that could assure a given rate to a traffic aggregate has been outlined elsewhere. In such a service, a fair distribution of bandwidth is one of the main concerns.
This paper presents experimental work carried out to evaluate howaf distributes bandwidth among flows under different load conditions and traffic patterns. We focused on the effect that marking mechanisms have on bandwidth sharing among flows within a singleaf class. The traffic types we used includeudp flows, individual and aggregatedtcp flows, mix oftcp andudp, tcp sessions with heterogeneous round-trip times, as well as color-blind and color-aware re-marking at the aggregation point fortcp flows. Tests were performed on real and simulated networks.
We have found certain conditions under whichaf distributes bandwidth fairly among nonadaptiveudp flows andtcp aggregates. Finally, we evaluate a basic rule for setting the parameters of the two-rate Three-Color Marker conditioning algorithm (trtcm) in order to achieve a better bandwidth distribution fortcp flows.
Résumé
Dans le cadre de l’architecture DiffServ, le groupe de classes de relayage (phb) Acheminement Assuré (Assured Forwarding ouaf) permet un traitement différentié des paquetsip dans les routeurs. Ce groupe est constitué de quatre classes indépendantes, chacune comportant trois niveaux de priorité de rejet des paquets. Des services de bout en bout basés sur cet ensemble dephb ont été proposés dans la littérature, notamment des services dont le but est d’offrir un débit assuré à un agrégat de flux. Un des problèmes principaux d’un service à débit assuré est la répartition équitable de la bande passante entre les différents agrégats.
Cet article porte sur l’évaluation de la performance d’af, en ce qui concerne la distribution de la bande passante entre les flux. Nous nous intéressons notamment à l’impact des mécanismes de marquage sur le partage de la bande passante au sein d’une seule classeaf. Nous étudions divers scénarios de charge du réseau et de types de trafic, à savoir: des fluxudp ; des fluxtcp individuels et agrégés ; des mélanges de fluxtcp etudp ; des connexionstcp ayant des temps d’aller-retour hétérogènes ; enfin, des marqueurs sensibles ou non au marquage préalable des paquets, situés aux points d’agrégation des fluxtcp. Certains tests sont menés sur des réseaux réels (plates-formes d’expérimentation), d’autres expériences sont effectuées par simulation.
Nous trouvons des conditions sous lesquellesaf distribue équitablement la bande passante entre fluxudp non adaptatifs et agrégats de fluxtcp. Enfin, nous évaluons une règle simple pour ajuster les paramètres de l’algorithme de marquage trtcm (two-rate Three-Color Marker) afin d’obtenir une meilleure répartition de la bande passante entre fluxtcp.
Similar content being viewed by others
References
Ciscoios Release 12.1 QoS Solutions Configuration Guide-Configuring Weighted Random Early Detection, http://www.cisco.com/univercd/cc/td/doc/product/software/iosl21/121cgcr%/QoS_C/qcprt3/qcdwred.htm.
Ciscoios Release 12.1 Quality of Service Solutions Configuration Guide-Congestion Avoidance Overview. http://www.cisco.com/univercd/cc/td/doc/product/software/iosl21/121cgcr%/QoS_c/qcprt3/qcdconav.htm#1106.
Tf-ngn:NextGenerationNetworking, http://www.terena.nl/tech/task-forces/ tf-ngn/.
Campanella (M.),Chivalier (P.),Sevasti (A.),Simar (N.), Quality of service definition, Technical report, Project Sequin Report (Deliverable D 2.1), March 2001, http://www.dante.net/sequin/deliverables/Seq-01-030.pdf.
Clark (D.),Fang (W.), Explicit allocation of best-effort packet delivery service,ieee/acmTransactions on Networking, 6(4):362–373, August 1998.
El-Gendy (M.A.),Shin (K.G.), Assured forwarding faimess using equation-based packet marking and packet separation,Computer Networks, 41(4):435–450, March 2003.
elizondo (A.),Garcia (M.), Ti2: Performance of differentiated services networks, Technical report, European Institute for Research and Strategic Studies in Telecommunications, January 2001. http: //www.eurescom.de/public/project/results/P1000-series/1006ti2.asp.
Floyd (S.),Jacobson (V.), Random early detection gateways for congestion avoidance,ieee/acmTransactions on Networking, 1(4):397–413, August 1993.
Floyd (S.),Jacobson (V.), Link-sharing and resource management models for packet networks,ieee/acmTransactions on Networking, 3(4):365–386, August 1995.
Golestani (S.J.), A self-clocked fair queueing scheme for broadband applications, InProceedings ofieee infocom’94, pages 636–646, Toronto, June 1994.
Heinanen (J.),Baker (F.),Weiss (W.),Wroclawski (J.), Assured Forwardingphb Group, Internet Standards Trackrfc 2597,ietf, June 1999.
Heinanen (J.),Guerin (R.), A two rate three color marker, Informationalrfc 2698,ietf, September 1999.
Hou (Y.T.),Wu (D.),Li (B.),Hamada (T.),Ahmad (I.),Chao (H.J.), A differentiated services architecture for multimedia streaming in next generation Internet,Computer Networks, 32(2):185–209, February 2000.
Jacobson (V.),Nichols (K.),Poduri (K.), An expedited Forwardingphb, Internet Standards Trackrfc 2598,ietf, June 1999.
Makkar (R.),Lambadaris (L.),Hadi Salim (J.),Seddigh (N.),Nandy (B.),Babiarz (J.), Empirical study of buffer management scheme for DiffServ Assured Forwardingphb, InProceedings of the 9thieee International Conference on Computer Communications and Networks, Las Vegas, October 2000.
Mccannes(S.),Floyd (S.), ns Network Simulator, http://www.isi.edu/nsnam/ns/.
Medina (O.),Étude des algorithmes d’attribution de priorités dans un Internet à Différentiation de Services, Ph.D. dissertation (in French), Université de Rennes 1, March 2001.
Nandy (B.),Ethridge (J.),Lakas (A.),Chapman (A.), Aggregate flow control: Improving assurances for differentiated services network, InProceedings ofieee infocom 2001,3, pp. 1340–1349, April 2001.
Nandy (B.),Seddigh (N.),Pieda (P.),Ethridge (J.), Intelligent traffic conditioners for Assured Forwarding based differentiated services networks, InProceedings of Networking 2000,1815 ofLecture Notes in Computer Science, pages 540–554, Paris, May 2000.
Seddigh (N.),Nandy (B.),Heinanen (J.), An Assured Rate Per Domain Behavior for Differentiated Services, Internet Draft draft-ietf-diffserv-pdb-ar-01.txt, work in progress, July 2001.
Seddigh (N.),Nandy (B.),Pieda (P.), Bandwidth assurance issues fortcp flows in a differentiated services network, InProceedings ofieee globecom 1999, pages 1792–1798, Rio de Janeiro, December 1999.
Seddigh (N.),Nandy (B.),Pieda (P.),Hadi Salim (J.),Chapman (A.), An experimental study of assured services in a DiffServip QoS network, InProceedings ofspie Symposium on Voice, Video and Data Communications: Internet Routing and Quality of Service,3529, pp. 217–219, December 1998.
Shi (H.),Packet scheduling strategies for emerging service models in the Internet, Phd thesis, Drexel University, August 2003.
Shin (J.),Kim (J.),Kuo (C.J.), Quality-of- service mapping mechanism for packet video in differentiated services network,ieeeTransactions on Multimedia,3(2):219–231, June 2001.
Yeom (L.),Reddy (A.), Marking for QoS improvement,Computer Communications,24(1), pp. 35–50, January 2001.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Medina, O., Orozco, J. & Ros, D. Bandwidth sharing under the assured forwarding Per-Hop behavior. Ann. Télécommun. 59, 439–466 (2004). https://doi.org/10.1007/BF03179705
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF03179705