Summary
We introduce a new adaptive MCMC algorithm, based on the traditional single component Metropolis-Hastings algorithm and on our earlier adaptive Metropolis algorithm (AM). In the new algorithm the adaption is performed component by component. The chain is no more Markovian, but it remains ergodic. The algorithm is demonstrated to work well in varying test cases up to 1000 dimensions.

Similar content being viewed by others
References
Andrieu, C. & Robert, C. P. (2001), Controlled MCMC for optimal sampling. Preprint. *http://www. statslab. cam. ac.uk/mcmc/
Atchade, Y. F. & Rosenthal, J. S. (2003), On Adaptive Markov Chain Monte Carlo Algorithms. Preprint. *http://www. statslab. cam. ac. uk/mcmc/
Gelman, A. G., Roberts, G. O. & Gilks, W. R. (1996), Efficient Metropolis jumping rules,in J. M. Bernardo, J. O. Berger, A. F. David & A. F. M. Smith, eds, ‘Bayesian Statistics V’, Oxford Univ. Press, New York, pp. 599–608.
Gilks, W. & Roberts, G. (1995), Stategies for improving MCMC,in W. R. Gilks, S. Richardson & D. J. Spiegelhalter, eds, ‘Markov Chain Monte Carlo in Practice’, Chapman & Hall, pp. 75–88.
Gilks, W., Roberts, G. & Sahu, S. (1998), ‘Adaptive Markov chain Monte Carlo through regeneration’,J. Am. Stat. Ass. 93, 1045–1054.
Haario, H., Saksman, E. & Tamminen, J. (1999), ‘Adaptive proposal distribution for random walk Metropolis algorithm’,Comput. Stat. 14, 375–395.
Haario, H., Saksman, E. & Tamminen, J. (2001), ‘An adaptive Metropolis algorithm’,Bernoulli 7(2), 223–242.
Haario, H., Saksman, E. & Tamminen, J. (2003), Componentwise adaptation for MCMC. Reports of the Department of Mathematics, University of Helsinki, Preprint 342.
Hastings, W. (1970), ‘Monte Carlo sampling methods using Markov chains and their applications’,Biometrika 57, 97–109.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. (1953), ‘Equations of state calculations by fast computing machine’,J. Chem. Phys. 21, 1087–1091.
Sahu, S. K. & Zhigljavsky, A. A. (2003), ‘Self regenerative Markov chain Monte Carlo with adaptation’,Bernoulli pp. 395–422.
Acknowledgments
This work has been supported by the Academy of Finland, MaDaMe project. We would also like to thank Prof. P.J. Green for the code for computing the integrated autocorrelation values.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Haario, H., Saksman, E. & Tamminen, J. Componentwise adaptation for high dimensional MCMC. Computational Statistics 20, 265–273 (2005). https://doi.org/10.1007/BF02789703
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02789703