Abstract
In this paper we present a framework for solving stochastic programs with complete integer recourse and discretely distributed right-hand side vector, using Gröbner basis methods from computational algebra to solve the numerous second-stage integer programs. Using structural properties of the expected integer recourse function, we prove that under mild conditions an optimal solution is contained in a finite set. Furthermore, we present a basic scheme to enumerate this set and suggest improvements to reduce the number of function evaluations needed.
Similar content being viewed by others
References
B. Bank, R. Mandel, Parametric Integer Optimization, Akademie Verlag, Berlin, 1988.
C.E. Blair, R.G. Jeroslow, The value function of a mixed integer program: I, Discrete Mathematics 19 (1977) 121–138.
B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, in: N.K. Bose (Ed.), Multidimensional Systems Theory, vol. 6, Reidel, Dordrecht, 1985.
A. Capani, G. Niesi, CoCoa User's Manual, Department of Mathematics, University of Genova, release 3.0b edn., 1995.
C.C. Caröe, J. Tind, L-shaped decomposition of two-stage stochastic programs with integer recourse, Technical Report, Institute of Mathematics, University of Copenhagen, 1995.
T. Christof, PORTA—A polyhedron representation transformation algorithm, Available via http:// www.iwr.uni-heidelberg.de/iwr/comopt/soft/PORTA/readme.html.
P. Conti, C. Traverso, Buchberger algorithm and integer programming, in: Proceedings of AAECC-9 (New Orleans), Lecture Notes in Computer Science, vol. 539, Springer, Berlin, 1991, pp. 130–139.
D. Cox, J. Little, D. O'Shea, Ideals, Varieties and Algorithms, Springer, New York, 1992.
Using the CPLEX Callable Library, CPLEX Optimization, 1995.
Y.M. Ermoliev, V.I. Norkin, R.J.-B. Wets, The minimization of semicontinuous functions: Mollifier subgradients, SIAM Journal on Control and Optimization 33 (1) (1995) 149–167.
Yu. Ermoliev, R.J.-B. Wets, Numerical Techniques for Stochastic Optimization, Springer, Berlin, 1988.
J.L. Higle, S. Sen, Stochastic decomposition: An algorithm for two-stage linear programs with recourse, Mathematics of Operations Research 16 (1991) 650–669.
S. Hosten, B. Sturmfels, GRIN: An implementation of Gröbner bases for integer programming, in: Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, vol. 920, Springer, Berlin, 1995, pp. 267–276.
P. Kall, S. W. Wallace, Stochastic Programming, Wiley, Chichester, 1994.
W.K. Klein Haneveld, L. Stougie, M. H. van der Vlerk, An algorithm for the construction of convex hulls in simple integer recourse programming, Annals of Operations Research 64 (1996) 67–81.
W.K. Klein Haneveld, M.H. van der Vlerk, On the expected value function of a simple integer recourse problem with random technology matrix, Journal of Computational and Applied Mathematics 56 (1994) 45–53.
B.J. Lageweg, J.K. Lenstra, A.H.G. Rinnooy Kan, L. Stougie, Stochastic integer programming by dynamic programming, in: Yu. Ermoliev, R.J.-B. Wets (eds.), Numerical Techniques for Stochastic Optimization, ch. 21, Springer, Berlin, 1988.
G. Laporte, F.V. Louveaux, The integer L-shaped method for stochastic integer programs with complete recourse, Operations Research Letters 13 (1993) 133–142.
F.V. Louveaux, M.H. van der Vlerk, Stochastic programming with simple integer recourse, Mathematical Programming 61 (1993) 301–325.
G.L. Nemhauser, L.A. Wolsey, Integer and Combinational Optimization, Wiley, New York, 1988.
A. Prékopa, Stochastic Programming, Kluwer Academic Publishers, Dordrecht, 1995.
R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
A. Ruszczyński, A regularized decomposition method for minimizing a sum of polyhedral functions, Mathematical Programming 35 (1986) 309–333.
A. Ruszczyński, Y. Ermoliev, V. Norkin, On optimal allocation of indivisibles under uncertainty, Operations Research, to appear.
R. Schultz, Continuity properties of expectation functions in stochastic integer programming, Mathematics of Operations Research 18 (1993) 578–589.
R. Schultz, On structure and stability in stochastic programs with random technology matrix and complete integer recourse, Mathematical Programming 70 (1995) 73–89.
R. Schultz, L. Stougie, M.H. van der Vlerk, Two-stag stochastic integer programming: A survey, Statistica Neerlandica 50 (3) (1996) 404–416.
L. Stougie, M.H. van der Vlerk, Stochastic integer programming, in: M. Dell'Amico, F. Maffioli, S. Martello (Eds.), Annotated Bibliographies in Combinatorial Optimization, ch. 9 Wiley, 1997, pp. 127–141.
S.R. Tayur, A new algorithm to solve stochastic integer programs with application to plant management, Technical report, Carnegie Mellon University, Pittsburgh, PA, in preparation.
S.R. Tayur, R.R. Thomas, N.R. Natraj, An algebraic geometry algorithm for scheduling in the presence of setups and correlated demands, Mathematical Programming 69 (1995) 369–401.
R.R. Thomas, A geometric Buchberger algorithm for integer programming, Mathematics of Operations Research 20 (1995) 864–884.
R.R. Thomas, R. Weismantel, Truncated Gröbner bases for integer programming, Applicable Algebra in Engineering Communication and Computing 8 (1997) 241–256.
R. Urbaniak, R. Weismantel, G. Ziegler, A variant of Buchberger's algorithm for integer programming, SIAM Journal on Discrete Mathematics 10 (1997) 96–108.
M.H. van der Vlerk, Stochastic programming with integer recourse, Ph.D. Thesis, University of Groningen, The Netherlands, 1995.
R. Van Slyke, R.J.-B. Wets, L-shaped linear programs with applications to control and stochastic programming, SIAM Journal on Applied Mathematics 17 (1963) 638–663.
S.W. Wallace, R.J.-B. Wets, Preprocessing in stochastic programming: The case of linear programs, ORSA Journal on Computing 4 (1992) 45–59.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Schultz, R., Stougie, L. & van der Vlerk, M.H. Solving stochastic programs with integer recourse by enumeration: A framework using Gröbner basis. Mathematical Programming 83, 229–252 (1998). https://doi.org/10.1007/BF02680560
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02680560