A numerical method for solving parabolic equations with opposite orientations | Computing
Skip to main content

A numerical method for solving parabolic equations with opposite orientations

Ein numerisches Verfahren zur Lösung parabolischer Differentialgleichungen mit entgegengesetzter Orientierung

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The solution of parabolic control problems is characterized by a system of two equations parabolic with respect to opposite orientations. In this paper a fast iterative method for solving such problems is proposed.

Zusammenfassung

Die Lösung parabolischer Kontrollprobleme wird durch ein System von zwei Differentialgleichungen charakterisiert, die bezüglich entgegenlaufender Richtungen parabolisch sind. In diesem Beitrag wird ein schnelles Iterationsverfahren zur Lösung derartiger Probleme vorgeschlagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Casti, J., Ljung, L.: Some new analytic and computational results for operator Riccati equations. SIAM J. Control13, 817–826 (1975).

    Google Scholar 

  2. Curtain, R. F.: The infinite-dimensional Riccati equation with applications to affine hereditary differential systems. SIAM J. Control13, 1130–1143 (1975).

    Google Scholar 

  3. Da Prato, G.: Equation d'évolution dans des algèbres d'opérateurs et application à des équations quasi-linéaires. J. Math. Pures et Appl..48, 59–107 (1969).

    Google Scholar 

  4. Gail, H.-P., Sedlmayr, E., Traving, G.: Non-LTE line formation in turbulent media. Astron & Astrophys.44, 421–429 (1975).

    Google Scholar 

  5. Hackbusch, W.: A numerical method for solving parabolic equations with opposite orientations, Part I: Description of the method. Report 77-6, Mathematisches Institut (Angewandte Mathematik), Universität zu Köln, 1977.

  6. Ladas, G. E., Lakshmikantham, V.: Differential equations in abstract spaces. New York-London: Academic Press 1972.

    Google Scholar 

  7. Leroy, D.: Méthodes numériques en contróle, optimal, application à un problème d'échange thermique. Thèse, Paris, 1972.

  8. Lions, J. L.: Optimal control of systems governed by partial differential equations. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  9. Lions, J. L., Magenes, E.: Non-homogeneous boundary value problems and applications I, II. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  10. Miellou, J.-C.: Sur une notion de monotonie conduisant à une extension de l'application de la méthode variationelle dans l'étude des systèmes d'équations et d'inéquations aux dérivées partielles, opérateurs paramonotones. Thèse Sc. math., Grenoble, 1970.

  11. Nedelec, M.: Schémas d'approximation pour des équations intégro différentielles de Riccati. Thèse, Paris, 1970.

  12. Stoer, J., Bulirsch, R.: Einführung in die Numerische Mathematik II. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  13. Taufer, J.: On factorization method. Aplikace matematiky11, 427–451 (1966).

    Google Scholar 

  14. Temam, R.: Sur l'équation de Riccati associée à des opérateurs non bornés, en dimension infinie. J. Functional Analysis,7, 85–115 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackbusch, W. A numerical method for solving parabolic equations with opposite orientations. Computing 20, 229–240 (1978). https://doi.org/10.1007/BF02251947

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02251947

Keywords