Numerical integration based on quasi-interpolating splines | Computing Skip to main content
Log in

Numerical integration based on quasi-interpolating splines

Numerische Integration mit quasi-interpolierenden Splines

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper product quadrature rules based on quasi-interpolating splines are proposed and convergence results are proved for bounded integrands. Convergence results are also proved for sequences of Cauchy principal value integrals of these quasiinterpolating splines. Some comparisons with other methods and numerical examples are given.

Zusammenfassung

Die vorliegende Arbeit behandelt auf quasiinterpolierenden Splines basierende Produktquadraturformeln und beweist Konvergenzresultate für limitierte Integranden. Konvergenzresultate mit diesen quasi-interpolierenden Splines werden auch für Cauchysche Hauptwertintegralsequenzen bewiesen. Vergleiche mit anderen Methoden und numerische Beispiele werden angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alaylioglu, A., Lubinsky, D. S., Eyre, D.: Product integration of logarithmic singular integrands based on cubic splines. J. Comp. Appl. Math.11, 353–366 (1984).

    Article  Google Scholar 

  2. Dagnino, C., Palamara Orsi, A.: Product integration of piecewise continuous integrands based on cubic spline interpolation at equally spaced nodes. Numer. Math.52, 459–466 (1988).

    Article  Google Scholar 

  3. Dagnino, C., Santi, E.: An algorithm for the generation of spline product rules for Cauchy singular integrals. Internal Report, Fac. Ingegneria, Univ. L'Aquila (1988).

  4. Dagnino, C.: Product integration of singular integrands based on cubic spline interpolation at equally spaced nodes. Numer. Math.57, 97–104 (1990).

    Article  Google Scholar 

  5. Dagnino C., Santi, E.: On the evaluation of one-dimensional Cauchy principal value integrals by rules based on cubic spline interpolation. Computing43, 267–276 (1990).

    Google Scholar 

  6. Dagnino, C., Santi, E.: Spline product quadrature rules for Cauchy singular integrals. J. Comp. Appl. Math.33, 133–140 (1990).

    Article  Google Scholar 

  7. Dagnino, C., Santi, E.: On the convergence of spline product quadratures for Cauchy principal value integrals. J. Comp. Appl. Math.36, 181–187 (1991).

    Article  Google Scholar 

  8. Dagnino, C., Demichelis, V., Santi, E.: An algorithm for the generation of product quadrature rules based on quasi-interpolating splines. Internal Report (1992).

  9. Dagnino, C., Rabinowitz, P.: Numerical integration of singular integrands based on quasi-interpolating splines (Submitted for publication).

  10. Davis, P. J., Rabinowitz, P.: Numerical integration, 2nd edn. New York: Academic Press 1984.

    Google Scholar 

  11. de Boor, C.: A practical guide to splines, Berlin, Heidelberg, New York: Springer 1978 (Applied Mathematical Sciences27).

    Google Scholar 

  12. Gerasoulis, A.: Piecewise-polynomial quadratures for Cauchy singular integrals. SIAM J. Numer. Anal.23, 891–902 (1986).

    Article  Google Scholar 

  13. Greville, T. N. E.: Spline functions, interpolation and numerical quadrature. In: Ralston, A., Wolf, H. S., (eds.) Mathematical methods for digital computers, vol. II, pp. 156–168. New York: John Wiley & Sons 1967.

    Google Scholar 

  14. Lyche, T., Schumaker, L. L.: Local spline approximation methods. J. Appr. Th.15, 294–325 (1975).

    Article  Google Scholar 

  15. Rabinowitz, P.: The convergence of noninterpolatory, product integration rules. In: Keast, P., Fairweather, G. (eds.) Numerical integration, pp. 1–16. Derdrecht: Reidel Publishing 1987.

    Google Scholar 

  16. Rabinowitz, P.: Numerical integration based on approximating splines. J. Comp. Appl. Math.33, 73–83 (1990).

    Article  Google Scholar 

  17. Schumaker, L. L.: Spline Functions. New York: John Wiley & Sons 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work sponsored by “Ministero dell'Università della Ricerca Scientifica” of Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagnino, C., Demichelis, V. & Santi, E. Numerical integration based on quasi-interpolating splines. Computing 50, 149–163 (1993). https://doi.org/10.1007/BF02238611

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02238611

AMS Subject Classification

Key words

Navigation