Abstract
In this paper product quadrature rules based on quasi-interpolating splines are proposed and convergence results are proved for bounded integrands. Convergence results are also proved for sequences of Cauchy principal value integrals of these quasiinterpolating splines. Some comparisons with other methods and numerical examples are given.
Zusammenfassung
Die vorliegende Arbeit behandelt auf quasiinterpolierenden Splines basierende Produktquadraturformeln und beweist Konvergenzresultate für limitierte Integranden. Konvergenzresultate mit diesen quasi-interpolierenden Splines werden auch für Cauchysche Hauptwertintegralsequenzen bewiesen. Vergleiche mit anderen Methoden und numerische Beispiele werden angegeben.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alaylioglu, A., Lubinsky, D. S., Eyre, D.: Product integration of logarithmic singular integrands based on cubic splines. J. Comp. Appl. Math.11, 353–366 (1984).
Dagnino, C., Palamara Orsi, A.: Product integration of piecewise continuous integrands based on cubic spline interpolation at equally spaced nodes. Numer. Math.52, 459–466 (1988).
Dagnino, C., Santi, E.: An algorithm for the generation of spline product rules for Cauchy singular integrals. Internal Report, Fac. Ingegneria, Univ. L'Aquila (1988).
Dagnino, C.: Product integration of singular integrands based on cubic spline interpolation at equally spaced nodes. Numer. Math.57, 97–104 (1990).
Dagnino C., Santi, E.: On the evaluation of one-dimensional Cauchy principal value integrals by rules based on cubic spline interpolation. Computing43, 267–276 (1990).
Dagnino, C., Santi, E.: Spline product quadrature rules for Cauchy singular integrals. J. Comp. Appl. Math.33, 133–140 (1990).
Dagnino, C., Santi, E.: On the convergence of spline product quadratures for Cauchy principal value integrals. J. Comp. Appl. Math.36, 181–187 (1991).
Dagnino, C., Demichelis, V., Santi, E.: An algorithm for the generation of product quadrature rules based on quasi-interpolating splines. Internal Report (1992).
Dagnino, C., Rabinowitz, P.: Numerical integration of singular integrands based on quasi-interpolating splines (Submitted for publication).
Davis, P. J., Rabinowitz, P.: Numerical integration, 2nd edn. New York: Academic Press 1984.
de Boor, C.: A practical guide to splines, Berlin, Heidelberg, New York: Springer 1978 (Applied Mathematical Sciences27).
Gerasoulis, A.: Piecewise-polynomial quadratures for Cauchy singular integrals. SIAM J. Numer. Anal.23, 891–902 (1986).
Greville, T. N. E.: Spline functions, interpolation and numerical quadrature. In: Ralston, A., Wolf, H. S., (eds.) Mathematical methods for digital computers, vol. II, pp. 156–168. New York: John Wiley & Sons 1967.
Lyche, T., Schumaker, L. L.: Local spline approximation methods. J. Appr. Th.15, 294–325 (1975).
Rabinowitz, P.: The convergence of noninterpolatory, product integration rules. In: Keast, P., Fairweather, G. (eds.) Numerical integration, pp. 1–16. Derdrecht: Reidel Publishing 1987.
Rabinowitz, P.: Numerical integration based on approximating splines. J. Comp. Appl. Math.33, 73–83 (1990).
Schumaker, L. L.: Spline Functions. New York: John Wiley & Sons 1981.
Author information
Authors and Affiliations
Additional information
Work sponsored by “Ministero dell'Università della Ricerca Scientifica” of Italy.
Rights and permissions
About this article
Cite this article
Dagnino, C., Demichelis, V. & Santi, E. Numerical integration based on quasi-interpolating splines. Computing 50, 149–163 (1993). https://doi.org/10.1007/BF02238611
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02238611