Abstract
In this paper we complete the proof of the following conjecture of L. Moser: Any convex region of arean can be placed on the plane so as to cover ≧n+f(n) lattice points, wheref(n) →∞.
Similar content being viewed by others
References
J. Beck, On a lattice point problem of L. Moser, I,Combinatorica 8 (1988), 21–47.
W. Blaschke,Kreis und Kugel, Leipzig: Gröschen 1916, New York: Chelsea 1949, Berlin: de Gruyter 1956.
W. Blaschke,Differentialgeometrie II, Affine Differentialgeometrie, Berlin: Springer 1923.
L. Fejes Tóth,Lagerungen in der Ebene, auf der Kugel und im Raum, Berlin: Springer 1953, 1972.
D. Koutroufiotis, On Blaschke's rolling theorem,Arch. Math. 23 (1972), 655–660.