Optimal selection from a gamma distribution with unknown parameter | Mathematical Methods of Operations Research Skip to main content
Log in

Optimal selection from a gamma distribution with unknown parameter

  • Published:
Zeitschrift für Operations Research Aims and scope Submit manuscript

Abstract

This paper considers the adaptive version of the optimal stopping problem where values attached to successive alternatives are generated from a gamma distribution with unknown parameter. The form of the optimal policy turns out to be simple: pass over the first several alternatives and thereafter accept the first alternative whose value exceeds the critical value that is a function of previous observations.

Zusammenfassung

In dieser Arbeit wird ein Stoppexperiment behandelt, bei dem die Beobachtungen stochastisch unabhängig und gamma-verteilt sind mit unbekanntem Skalen-Parameter.

Es wird das Problem des optimalen Stoppens gelöst, das durch die Betrachtung von konjugierten a priori Verteilungen entsteht. Die optimale Stoppregel ist dabei von folgender einfacher Gestalt: Man macht zunächst eine vorgegebene Anzahl von Beobachtungen und stoppt danach, sobald der Beobachtungswert eine kritische Grenze überschreitet, die sich aus den vorher erhaltenen Werten berechnen läßt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chow, Y.S., H. Robbins, andD. Siegmund: Great Expectations: The Theory of Optimal Stopping. Boston 1971.

  • DeGroot, M.H.: Some problems of optimal stopping. J. Roy. Stat. Soc., Ser. B.30, 1968, 108–122.

    Google Scholar 

  • Gilbert, J.P., andF. Mosteller: Recognizing the maximum of a sequence. J. Amer. Stat. Asoc.61, 1966, 35–73.

    Google Scholar 

  • Johnson, N.L., andS. Kotz: Distributions in Statistics: Continuous Multivariate Distributions. New York 1972.

  • Pearson, K.: Tables of Incomplete Beta-Function. London 1934.

  • Sakaguchi, M.: Dynamic programming of some sequential sampling design. J. Math. Analysis and Appl.2, 1961, 446–466.

    Google Scholar 

  • —: Optimal stopping in sampling from a bivariate distribution. J. Operat. Res. Soc. Japan.16, 1973, 186–200.

    Google Scholar 

  • Samuels, S.M.: Minimax stopping rules when the underlying distribution is uniform. J. Amer. Stat. Asoc.76, 1981, 188–197.

    Google Scholar 

  • Stewart, T.J.: Optimal selection from a random sample with learning of the underlying distribution. J. Amer. Stat. Asoc.73, 1978, 775–780.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamaki, M. Optimal selection from a gamma distribution with unknown parameter. Zeitschrift für Operations Research 28, 47–57 (1984). https://doi.org/10.1007/BF01919088

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01919088

Keywords

Navigation