Stability and nonsingular stable precompensation: An algebraic approach | Theory of Computing Systems Skip to main content
Log in

Stability and nonsingular stable precompensation: An algebraic approach

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

The module theoretic framework in linear time invariant system theory is extended to include stability considerations as well. The resulting setup is then applied to an investigation of nonsingular, causal, and stable precompensation. The main issues are resolved through the introduction of two sets of integer invariants-thestability indices and thepole indices. The stability indices characterize the dynamical properties of all the stable systems that can be obtained from a specified system through the application of nonsingular, causal, and stable precompensation. The pole indices characterize the dynamical properties of all the nonsingular, causal, and stable precompensators that stabilize a specified system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Brasch and J. B. Pearson. Pole placement using dynamic compensators,IEEE Transactions on Automatic Control, 15:34–43 (1970).

    Google Scholar 

  2. P. Brunovski. A classification of linear controllable systems, Kybernetika, 3:173–187 (1970).

    Google Scholar 

  3. C. A. Desoer, R. W. Liu, J. Murray, and R. Saeks. Feedback system design: the fractional representation approach to analysis and synthesis,Trans IEEE, 25:399–412 (1980).

    Google Scholar 

  4. P. A. Furhmann. Algebraic system theory: an analyst's point of view, Journal of the Franklin Institute, 301:521–540 (1976).

    Google Scholar 

  5. I. C. Gokhberg and M. G. Krein. Systems of integral equations on a half line with kernels depending on the difference of arguments, Am. Math. Soc., Translations, 14: 2:217–287 (1960).

    Google Scholar 

  6. J. Hammer. Linear dynamic output feedback: invariants and stability, to appear inIEEE Trans. on Automatic Control, April 1983 (1981).

  7. J. Hammer and M. Heymann. Pole assignment and minimal feedback design,International Journal on Control, 37:63–88 (1983).

    Google Scholar 

  8. J. Hammer and M. Heymann. Causal factorization and linear feedback,SIAM J. on Control and Optimization, 19:445–468 (1981).

    Google Scholar 

  9. J. Hammer and M. Heymann. Strictly observable rational linear systems,SIAM J. on Control and Optimization, 21:1–16 (1983).

    Google Scholar 

  10. M. L. J. Hautus and M. Heymann. Linear feedback—an algebraic approach,SIAM Journal on Control and Optimization 16:83–105 (1978).

    Google Scholar 

  11. R. E. Kalman. Algebraic structure of linear dynamical systems. I: The module of Σ,Proceedings of the National Academy of Science (USA), 54: 1503–1508 (1965).

    Google Scholar 

  12. R. E. Kalman.Lectures on Controllability and Observability, CIME (1968).

  13. R. E. Kalman. Kronecker invariants and feedback, inOrdinary Differential Equations, 1971 NRL-MRC Conference, L. Weiss ed., pp. 459–471, Academic Press, New York (1971).

    Google Scholar 

  14. R. E. Kalman, P. L. Falb and M. A. Arbib.Topics in Mathematical System Theory, McGraw-Hill, New York (1969).

    Google Scholar 

  15. P. P. Khargonekar and E. Emre. Further results on polynomial characterizations of (F, G)-invariant subspaces, preprint, Center for Mathematical System Theory, University of Florida, Gainesville, FL 32611, U.S.A. (1980).

    Google Scholar 

  16. H. Kwakernaak and R. Sivan.Linear Optimal Control Systems, Wiley-Interscience, New York (1972).

    Google Scholar 

  17. C. C. MacDuffee.The Theory of Matrices, Chelsea, New York (1934).

    Google Scholar 

  18. A. S. Morse. System invariants under feedback and cascade control, Proceedings of the conference on Mathematical System Theory, Udine, Italy, pages 61–74. Appeared inLecture Notes in Economics and Mathematical Systems, 131, (G. Marchesini and S. Mitter, editors), Springer Verlag, Berlin (1975).

    Google Scholar 

  19. H. F. Münzner and D. Prätzel-Wolters. Minimal bases of polynomial modules, structural indices and Brunovsky-transformations,Int. J. Control 30:291–318 (1979).

    Google Scholar 

  20. L. Pernebo. An algebraic theory for the design of controllers for linear multivariable systems—part I: structure matrices and feedforward design,Trans. IEEE, AC 26:171–183 (1981).

    Google Scholar 

  21. H. H. Rosenbrock.State Space and Multivariable Theory, Nelson, London (1970).

    Google Scholar 

  22. J. H. M. Wedderburn.Lectures on Matrices, Colloquium publication of the AMS,XVII. Also, Dover publication, New York, 1964 (1934).

  23. W. A. Wolovich.Linear Multivariable Systems, Applied Mathematical Sciences Series, No. 11, Springer Verlag, New York (1974).

    Google Scholar 

  24. W. A. Wolovich and P. L. Falb. Invariants and canonical forms under dynamic compensation,SIAM Journal on Control, 14:996–1008 (1976).

    Google Scholar 

  25. W. M. Wonham.Linear Multivariable Control: A Geometric Approach, Lecture Notes in Economics and Mathematical Systems, No. 101, Springer Verlag, New York (1974).

    Google Scholar 

  26. B. F. Wyman.Linear Systems Over Commutative Rings, Lecture Notes, Stanford University, Stanford, CA., U.S.A. (1972).

    Google Scholar 

  27. D. C. Youla. On the factorization of rational matrices,IRE Transactions on Information Theory, pp. 172–189 (1961).

  28. O. Zariski and P. Samuel.Commutative Algebra, D. Van Nostrand Co., New York (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was done while the author was with the Center for Mathematical System Theory, University of Florida, Gainesville, Florida 32611, USA, and was supported in part by US Army Research Grant DAAG29-80-C0050 and US Air Force Grant AFOSR76-3034D.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammer, J. Stability and nonsingular stable precompensation: An algebraic approach. Math. Systems Theory 16, 265–296 (1983). https://doi.org/10.1007/BF01744583

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01744583

Keywords

Navigation