Abstract
In this note we give a complete explicit factorization of\(x^{2^k }\) + 1 into irreducible polynomials overF p for a primep≡3 mod 4. As a result we can construct an irreducible polynomial overF p of degree of any power of 2. Some interesting properties of the coefficients of the irreducibles are noted. We also mention that our results may be useful in applying the Fast Fourier Transform over finite fields.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aho, A. V., Hopcroft, J. E., Ullman, J. D.: The Design and Analysis of Computer Algorithms. Reading, MA: Addison-Wesley 1974
Borho, W., Buhl, J., Hoffmann, H., Mertens, S., Nebgen, E., Reckow, R.: Große Primzahlen und Befreundete Zahlen: Über den Lucas-Test and Thabit-Regeln. Mitt. Math. Ges. Hamburg11, 232–256 (1983)
Cohen, H., Lenstra, H. W., Jr.: Primality testing and Jacobi sums. Math. Comp.42, 297–330 (1984)
Lenstra, H. W., Jr.: Finding isomorphisms between finite fields. Math. Comp.56, 329–347 (1991)
Lidl, R., Niederreiter, H.: Finite fields. Reading, MA: Addison-Wesley 1983
Lipson, J. D.: Elements of Algebra and Algebraic Computing. Menlo Park, CA: Benjamin/Cummings 1981
Shoup, V.: New algorithms for finding irreducible polynomials over finite fields. Math. Comp.54, 435–447 (1990)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Blake, I.F., Gao, S. & Mullin, R.C. Explicit factorization of\(x^{2^k }\) + 1 overF p with primep≡3 mod 4. AAECC 4, 89–94 (1993). https://doi.org/10.1007/BF01386832
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01386832