Abstract
We show that if\(\sum\limits_{x \in S} {\deg _{G^x } \geqslant \left| G \right|}\), for every stable set\(S \subseteq V\left( G \right),\left| S \right| = k\), then the vertex set ofG can be covered withk−1 cycles, edges or vertices. This settles a conjecture by Enomoto, Kaneko and Tuza.
Similar content being viewed by others
References
G. A. Dirac: Some theorems on abstract graphs,Proc. London Math. Soc.,2 (1952), 69–81.
H. Enomoto, A. Kaneko, M. Kouider andZs. Tuza: Degree sums and covering cycles,Journal of Graph Theory,20 (1995), 419–422.
H. Enomoto, A. Kaneko, andZs. Tuza:P 3-factors and covering cycles in graphs of minimum degreen/3, Colloquia Mathematica Societatis János Bolyai 52. Combinatorics, Eger (Hungary), North Holland (1988), 213–220.
M. Kouider: Covering vertices by cycles,Journal of Graph Theory,18 (1994), 757–776.
O. Ore: Note on Hamiltonian circuits,Amer. Math. Monthly,67 (1960), 55.