Knowledge-based (expert) systems in engineering applications: A survey | Journal of Intelligent & Robotic Systems Skip to main content
Log in

Knowledge-based (expert) systems in engineering applications: A survey

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This survey paper presents a thorough description of fundamentals of engineering based expert systems and their knowledge representation techniques. The most important expert system development tools and existing operational expert systems in many different engineering domains are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alty, J. L. and Johannsen, G., Knowledge-based dialogue for dynamic systems,Automatica 25(6) (1989).

  2. Antsaklis, P. J. and Passino, K. M. (eds),Introduction to Intelligent Control Systems, Kluwer Acad. Pubs., Dordrecht, 1992.

    Google Scholar 

  3. Arzen, K. E., An architecture for expert system based feedback control,Automatica 25(6) (1989).

  4. Astrom, K. J., Expert control,Automatica 22 (1986).

  5. Badami, V. V., Nielsen, P., and Comly, J. B., An intelligent controller for process automation,J. Intell. Robotic Systems 4(1) (1991).

  6. Balzer, R., Erman, D., London, P., and Williams, C., Hearsay ii: a domain independent framework for expert systems, inProc. First Annual National Conference on AI (1980), pp. 108–110.

  7. Beale, G. O. and Kawamura, K., Coupling symbolic and numerical computation for intelligent simulation, in S. Tzafestas, (ed.),Knowledge-Based System Diagnosis, Supervision and Control, Plenum, New York, London, 1989.

    Google Scholar 

  8. Bobrow, D. G. and Stefik, M.,The LOOPS Manual, Xerox Corporation, 1983.

  9. Bobrow, D. G. and Winograd, T., An overview of krl, a knowledge representation language,Cognitive Science 1(1) (1977).

  10. Brazile, R. P. and Swigger, K. M., Gates: an airline gate assignment and tracking expert system,IEEE Expert 5(3) (1988), 25–40.

    Google Scholar 

  11. Brewka, G., The logic of inheritance in frame system, inProc. 10th International Joint Conference on Artificial Intelligence (1987), pp. 438–488.

  12. Buchanan, B. G., Barstow, D., Bechtel, R., Bennet, J., Clancey, W., Kulikowski, C., Mitchell, T. M., and Waterman, D. A., Constructing an expert system, Chapter 5, inBuilding Expert Systems, Addison-Wesley, Reading, MA, 1983.

    Google Scholar 

  13. Buchanan, B. G. and Feigenbaum, E. A., Dendral and meta-dendral: Their applications dimension,Artificial Intelligence 11 (1978), 5–24.

    Google Scholar 

  14. Buchanan, B. G. and Shortliffe, E. H.,Rule-Based Expert Systems, Addison-Wesley, Reading, MA, 1984.

    Google Scholar 

  15. Bundy, A. (ed.),Cataloque of Artificial Intelligence Tools, Springer-Verlag, Heidelberg, 1984.

    Google Scholar 

  16. Butz, B. and Palumbo, N. F., Developing an expert system to assist in control system design,J. Intell. Robotic Systems 2 (1989).

  17. Cha, J., Rao, M., Zhou, J., Zhao, Z., and Guo, W., New progress on integrated environment for intelligent manufacturing automation, inProc. IEEE Inter. Sympos. Intelligent Control, Arlington, VA, 1991.

  18. Clancey, W. J., Heuristic classification,Artificial Intelligence (1985), 289–350.

  19. Clancey, W. J., Transcript of plenary sessions, cognition and expertise, in1st AAAI Workshop Knowledge Accquisition in Knowledge Based Systems, Banff, Canada, 1986.

  20. Inference Corporation,The advance reasoning tool: Conceptual overview, technical report, Inference Corporation.

  21. Cruz, J. B. and Stubberud, A. R., Knowledge-based approach to multiple control coordination in complex systems, inProc. IEEE International Symposium on Intelligent Control, Philadelphia, PA, 1987.

  22. Doraiswami, R. and Jiang, J., Performance monitoring in expert control systems,Automatica 25(6) (1989).

  23. Duda, R. O. and Gasching, J. G., Model design in the prospector consultant system for mineral explotation, in D. Michie (ed.),Expert Systems in the Micro Electronic Age, Edinburgh University Press, Edinburgh, 1979, pp. 153–167.

    Google Scholar 

  24. Farah, B. N., Expert systems: An application in flexible manufacturing,J. Intell. Robotic Systems 1(1) (1988).

  25. Farsaie, A., McKnight, T. R., Ferren, B., and Harrison, C. F., Intelligent controllers for an autonomous system, inProc. IEEE Inter. Sympos. Intelligent Control, Philadelphia, PA, 1987.

  26. Feigenbaum, E. A., The art of artificial intelligence: Themes and case studies of knowledge engineering, inProc. 5th International Joint Conference on Artificial Intelligence (1977), pp. 1014–1029.

  27. Findler, N. V.,Associative Networks, Representation and Use of Knowledge by computers, Academic Press, New York, NY, 1979.

    Google Scholar 

  28. Forbus, K. D., Qualitative process theory,Artificial Intelligence 24 (1984), 85–168.

    Google Scholar 

  29. Forbus, K. D., The qualitative process engine, in D. S. Weld and J. de Kleer (eds),Readings in Qualitative Reasoning about Physical Systems, Morgan Kaufmann, Los Altos, CA, 1990.

    Google Scholar 

  30. Forgy, C. L. and McDermott, J.,The OPS5 user's Manual, Carnegie Mellon University, Department of Computer Science, 1980.

  31. Frost, R.,Introduction to Knowledge Base Systems, Collins Professional and Technical Books, 1986.

  32. Geirratano, L. C. and Riley, G.,Expert systems, principles and programming, PWS-KENT, Boston, MA, 1989.

    Google Scholar 

  33. Gentil, S., Barrand, A. Y., and Szafnicki, K., Sexi: An expert identification package,Automatica 26(4) (1990), 803–809.

    Google Scholar 

  34. Goedel, K., On formally undecidable propositions of principia mathematica and related systems.In Van Heijenoort (1967), pp. 1879–1931.

  35. Goldberg, A. and Robson, D.,Smalltalk 80:the Language and its Implementation, Addison-Wesley, Reading, MA, 1983.

    Google Scholar 

  36. Greiner, R. and Lenat, D. B., A representation language, inProc. First Annual National Conf. on AI (1980), pp. 165–169.

  37. Carnegie Group.Knowledge Craft 3.0 Reference Manual, Carnegie Group, Pittsburg, PA, 1985.

    Google Scholar 

  38. Haest, M., Bastin, G., Geners, M., and Wertz, V., Espion: An expert system for system identification,Automatica 26(1) (1990), 85–95.

    Google Scholar 

  39. Hayes-Rith, B. F., Rule-based systems,Communications ACM 26(9) (1985), 921–932.

    Google Scholar 

  40. Hayes-Rith, B. F., Waterman, D. A., and Lenat, D.,Building Expert Systems, Addison-Wesley, Reading, MA, 1983.

    Google Scholar 

  41. Horty, J. F., Thomason, R. H., and Touretzky, D. S., A skeptical theory of inheritance in non monotonic semantic nets, inProc. of the National Conference on Artificial Intelligence (1987), pp. 358–363.

  42. Intellicorp,The Knowledge Engineering Environment, Intellicorp, Mountain View, CA, 1984.

    Google Scholar 

  43. Irgon, A., Zolnowski, J., Murray, K. J., and Gersho, M., Expert system developmenta retrospective view of five systems,IEEE Expert 5(3) (1990), 24–40.

    Google Scholar 

  44. Jackson, P.,Introduction to Expert Systems, Addison-Wesley, Reading, MA, 1990.

    Google Scholar 

  45. Jager, R., Verbruggen, H. B., Bruijn, P. M., and Krijgsman, A. J., Direct real-time control using knowledge-based techniques, inProc. Europ. Intelligent Simulation Conference, Gent, Belgium, 1990.

    Google Scholar 

  46. Jansen, J. J. and Puttgen, H. B., Asdep: An expert system for electric power plant design,IEEE Expert 2(1) (1987), 56–66.

    Google Scholar 

  47. Johansen, J. G. and Alty, J. L., Knowledge engineering for industrial expert systems,Automatica 27(1) (1991), 97–114.

    Google Scholar 

  48. Kahn, G. and McDermott, D., The mud system, inProc. 1st IEEE Conference on AI Applications (1984).

  49. Kinnucan, P.,Computer that Think Like Experts, High technology (1984).

  50. Knuth, D. E., Semantics of context-free language,Math. Syst. Theory 2 (1968), 127–145.

    Google Scholar 

  51. Kocabas, S., A review of learning,The Knowledge Engineering Review 6(3) (1991), 195–222.

    Google Scholar 

  52. Kokar, M., Anderson, C., Dean, T., Valavanis, K., and Zadrozny, W., Knowledge representations for learning control, inProc. 5th IEEE International Symposium on Intelligent Control, Philadelphia, PA, 1990.

  53. Kowalski, R. A.,Logic for Problem Solving, North-Holland, Amsterdam, 1979.

    Google Scholar 

  54. Kunz, J. C., Kehler, T. P., and Williams, M. D., Application development using a hybrid an development system,AI Magazine 5(3) (1984).

  55. Kusiak, A., Manufacturing systems: A knowledge and optimization-based approach,J. Intell. Robotic Systems 3(1) (1990).

  56. Laffey, T. J., Perkins, W. A., and Nguyen, T. A., Reasoning about fault diagnosis with les,IEEE Expert 1(1) (1986), 13–20.

    Google Scholar 

  57. Leinweber, D., Expert systems in space,IEEE Expert 2(1) (1987), 26–36.

    Google Scholar 

  58. Lenat, D. B., On automated scientific theory formation: a case study using the am program,Machine Intelligence 9 (1979), 238–251.

    Google Scholar 

  59. Lenat, D. B., Eurisko: A program that learns new heuristics and domain concepts,Artificial Intelligence 21(1) (1983), 61–98.

    Google Scholar 

  60. Leung, K. S. and Wong, M. H., An expert system shell using structured knowledge,Computer 23(3) (1991).

  61. Lirov, Y., Robin, E. Y., McElhaney, B. G., and Wilbur, L. W., Artificial intelligence modeling of control systems,Simulation 50(1) (1988), 12–24.

    Google Scholar 

  62. Madni, A. M., The role of human factors in expert system design and acceptance,Human Factors 30 (1988).

  63. McDermott D. and Brooks, R., Arby: diagnosis with shallow causal models,AAAI-82 (1982).

  64. McDermott, J., R1: an expert in the computer system domain, inProc. of the National Conference on AI (1980), pp. 269–271.

  65. McDermott, J., R1's formative years,AI Magazine 2(2) (1981).

  66. McDermott, J., R1: a rule-based configurer of computer systems,Artificial Intelligence 19 (1982), 39–88.

    Google Scholar 

  67. Mettrey, W., A comperative evaluation of expert system tools,Computer 24(2) (1991).

  68. Mikhailov, L. K., Schockenhoff, R., Pautzke, F., and NourEldin, H. A., Towards building an intelligent flexible manufacturing control system, inProc. IFAC International Symposium on Distributed Intelligence Systems, Arlington, VA, 1991.

  69. Minnick, D. J., Kaufman, H., and Neat, G. W., Expert hierarchical adaptive controller for robotic system, inProc. IEEE International Symposium on Intelligent Control, Albany, NY, 1989.

  70. Minsky, M. L., A framework for representing knowledge, inThe Psychology of Computer Vision, McGraw-Hill, New York, 1975, pp. 211–277.

    Google Scholar 

  71. Nil, H. P. and Aiello, N., Age (attempt to generalize): A knowledge based program for building knowledge based programs,International Joint Conference on AI 6 (1979), 645–655.

    Google Scholar 

  72. Niwa, K., Sasaki, K., and Ihara, H., An experimental comparison of knowledge representation schemes,The AI Magazine, 1984.

  73. Painter, J. H., Lin, S. K., and Glass, E., A knowledge-based control paradigm for real-time systems, inProc. IEEE International Symposium on Intelligent Control, Arlington, VA, 1988.

  74. Pang, G. K. H., A framework for intelligent control,J. Intell. Robotic Systems 4(2) (1991).

  75. Papakonstantinou, G. and Kontos, J., Knowledge representation with attribute grammars,The Computer Journal 29(3) (1986), 241–245.

    Google Scholar 

  76. Papakonstantinou, G., Moraitis, C., and Panayiotopoulos, T., An attribute grammar interpreter as a knowledge engineering toll,Angewandte Informatik 9 (1986), 382–388.

    Google Scholar 

  77. Papakonstantinou, G. and Tzafestas, S., Attribute grammar approach to knowledge based system building: application to fault diagnosis, in S. Tzafestas (ed.),Knowledge-Based System Diagnosis, Supervision and Control, Chapter 7, Plenum, New York, London, 1989.

    Google Scholar 

  78. Passino, K. M. and Antsaklis, P. J., Fault detection and identification in an intelligent restructuring controller,J. Intell. Robotic Systems 1(2) (1988).

  79. Porter, B., Jones, A. H., and McKeown, C. B., Real-time expert controllers for plants with actuator non-linearities, inProc. IEEE International Symposium on Intelligent Control, Philadelphia, PA, 1987.

  80. Post, E., Formal reductions of the general combinatorial problem,American Journal of Mathematics 65 (1943), 197–268.

    Google Scholar 

  81. Quillian, M. R., Semantic memory, in M. L. Minsky (ed.),Semantic Information Processing, MIT Press, Cambridge, MA, 1968, pp. 227–270

    Google Scholar 

  82. Raiha, K. J., Bibliography on attribute grammar,SIGPLAN Notices 15(5) (1980), 35–44.

    Google Scholar 

  83. Rao, M., Jiang, T.-S., and Tsai, J. J.-P., Knowledge-based optimal control, inProceedings, IEEE International Symposium on Intelligent Control, Arlington, VA, 1988.

  84. Rao, M., Jiang, T.-S., and Tsai, J. J.-P., Integration strategy for distributed intelligent systems,J. Intell. Robotic Systems 3(2) (1991).

  85. Reddy, R., Epistemology of knowledge based simulation,Simulation 48(4) (1987), 162–166.

    Google Scholar 

  86. Reichgelt, H. and Van Harmelen, F., Criteria for choosing representation languages and control regimes for expert systems,Knowledge Engineering Review 1(4) (1986), 2–17.

    Google Scholar 

  87. Robinson, J. A.,Logic: Form and Function, Edinburgh University Press, Edinburgh, UK, 1979.

    Google Scholar 

  88. Sanderson, A. C.,Applications of Neural Networks in Robotics and Auromation for Manufacturing, Technical Report CIRSSE, No. 30, RPI (1988).

  89. Sassen, J. M. A. and Jaspers, R. B. M., Design issues of real-time knowledge based systems, in1992 IFAC/IFIP/IMACS Symp. on AI in Real Time Control, Delft, The Netherlands, 1992.

  90. Shin, K. G. and Cui, X., Design of a knowledge-based controller for intelligent control systems,IEEE Transactions on Systems, Man and Cybernetic 21(2) (1991).

  91. Shortliffe, E. H.,MYCIN:A rule-based computer program for advancing phisicians regarding antimicrobial therapy selection, PhD thesis, Stanford University, 1974, reprinted with revisions as Shortliffe (1976).

  92. Teknowledge,S.1 Reference Manual, Teknowledge, Palo Alto, CA, 1985.

    Google Scholar 

  93. Thagard, P.,Computational Philosophy of Science, MIT Press, Cambridge, MA, 1988.

    Google Scholar 

  94. Thompson, D. R. and Ray, A., A hierarchically structured knowledge-based system for welding automation and control, inProc. IEEE International Symposium on Intelligent Control, Philadelphia, PA, 1987.

  95. Touretzy, D. S., Horty, J. F., and Thomason, R. H., A clash of intuitions: the current state of non monotonic multiple inheritance systems, inProc. 10th International Joint Conference on Artificial Intelligence (1987), pp. 476–482.

  96. Valavanis, K. P. and Saridis, G. N., A review of intelligent control based methodologies for modeling and analysis of hierarchically intelligent systems, inProc. IEEE International Symposium on Intelligent Control, Philadelphia, PA, 1990.

  97. Valavanis, K. P. and Saridis, G. N.,Intelligent Robotic Systems:Theory, Design and Applications, Kluwer Acad. Pubs, Dordrecht 1992.

    Google Scholar 

  98. Valavanis, K. P. and Yuan, P. H., Hardware and software for intelligent robotic systems,J. Intell. Robotic Systems 1(4) (1989).

  99. Van Melle, W.,A domain-independent system that aids in constructing knowledge-based consultation programs, PhD thesis, Stanford University, 1980.

  100. Van Melle, W.,System aids in constructing consultation programs, UMI Research Press, Ann Arbor, Michigan, 1981.

    Google Scholar 

  101. Walson, S., Gaw, D., and Meystel, A., Updating and organizing world knowledge for an autonomous control system, inProc. IEEE International Symposium on Intelligent Control, Philadelphia, PA, 1987.

  102. Walker, T. C. and Miller, R. K.,Expert Systems. An Assessment of Technology and Applications, SEAI Technical Publications, Madison, GA, 1986.

    Google Scholar 

  103. Weiss, S. M. and Kulikowski, C. A., Expert: A system for developing consultation models, inProc. International Joint Conference on AI (1979), pp. 942–947.

  104. Woods, E., On representations for continuous dynamic systems, in1992 IFAC/IFIP/IMACS Symp. on AI in Real-Time Control, Delft, The Netherlands, 1992.

  105. Woods, E. A., The hybrid phenomena theory, in J. Mylopoulos and R. Reiter (eds),Proc. 12th Joint Conf. of AI, Morgan Kaufmann, Los Altos, CA, 1991.

    Google Scholar 

  106. Woods, E. A. and Balchen, J. G., Structural estimation with hybrid phenomena theory, inIFAC Workshop on AI in Real Time Control, Sonoma County, CA, 1991.

  107. Woods, W., What's in a link: foundations for semantic network, in D. G. Bobrow and A. Collins (eds),Representations and Understanding, Academic Press, New York, NY, 1975.

    Google Scholar 

  108. Zhang, J., Roberts, P. D., and Ellis, J. E., An application of expert system techniques to the on-line control and fault diagnosis of a mixing process,J. Intell. Robotic Systems 1(3) (1988).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research has been partially supported by LEQSF Grant # RD-A-43.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valavanis, K.P., Kokkinaki, A.I. & Tzafestas, S.G. Knowledge-based (expert) systems in engineering applications: A survey. J Intell Robot Syst 10, 113–145 (1994). https://doi.org/10.1007/BF01258225

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01258225

Key words

Navigation