Computing a hyperelliptic integral using arithmetic in the Jacobian of the curve | Applicable Algebra in Engineering, Communication and Computing Skip to main content
Log in

Computing a hyperelliptic integral using arithmetic in the Jacobian of the curve

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper, we describe an efficient algorithm for computing an elementary antiderivative of an algebraic function defined on a hyperelliptic curve. Our algorithm combines B. M. Trager's integration algorithm and a technique for computing in the Jacobian of a hyperelliptic curve introduced by D. G. Cantor. Our method has been implemented and successfully compared to Trager's general algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Byrd, P., Friedman, M. D.: Handbook of Elliptic Integrals for Engineers and Scientists. Berlin, Heidelberg, New York: Springer 1971

    Google Scholar 

  2. Cantor, D. G.: Computing in the Jacobian of an Hyperelliptic Curve. Math. Comp.48 (177):, 95–101, (1987)

    Google Scholar 

  3. Chevalley, C.: Introduction to the Theory of Algebraic Functions of one Variable. A.M.S. Surveys VI (1951)

  4. Coates, J.: Construction of Rational Functions on a Curve. Proc. Camb. Phil. Soc.68:105–123 (1970)

    Google Scholar 

  5. Davenport, J. H.: On the Integration of Algebraic Functions. Lecture Notes in Computer Science. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  6. Gonzalez-Vega, L., Lombardi, H., Recio, T., Roy, M.-F.: Spécialisation de la Suite de Sturm et Sous-Résultants. Informatique Théorique Appl.24 (6):, 561–588 (1990)

    Google Scholar 

  7. Hardy, G. H.: The Integration of Functions of a single variable (2nd ed.), Combridge Trac 2, Cambridge U. Press (1916)

  8. Hermite, E.: Sur l'Intégration des Fractions Rationnelles, Nouvelles Ann. Math.2(11): 145–148 (1872)

    Google Scholar 

  9. Liouville, J.: Premier Mémoire sur la Détermination des Intégrales dont la Valeur est Algébrique. J. l'Ecole Polytechnique22: 124–148 (1833)

    Google Scholar 

  10. Mack, D.: On Rational Integration, UCP-38, Department of Computer Science, University of Utah (1975)

  11. Risch, R. H.: The Solution of the Problem of Integration in Finite Terms. Bull. A.M.S.76: 605–608 (1970)

    Google Scholar 

  12. Trager, B. M.: Algorithms for Manipulating Algebraic Functions. S.M. thesis M.I.T. (1976)

  13. Trager, B. M.: Algebraic Factoring and Rational Function Integration, Proceedings of the 1976 Symposium on Symbolic and Algebraic Computation. ACM, New York 1976

    Google Scholar 

  14. Trager, B. M.: Integration of Algebraic Functions, Ph.D. thesis, Department of EECS, M.I.T. (1984)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work partially made at Departement Informatik ETH Zurich

Unité de Recherche Associée au CNRS 1586

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, L. Computing a hyperelliptic integral using arithmetic in the Jacobian of the curve. AAECC 6, 275–298 (1995). https://doi.org/10.1007/BF01235720

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01235720

Keywords

Navigation