Autonomous landing of airplanes by dynamic machine vision | Machine Vision and Applications Skip to main content
Log in

Autonomous landing of airplanes by dynamic machine vision

  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

The 4D approach to dynamic machine vision has been validated for the application area of on-board autonomous landing approaches in the visual flight regime with computing technology available today; sensors are a video-camera, inertial gyros and an air velocity meter. The key feature of the method is the reconstruction and servo-maintained adjustment by prediction error feedback of an internal spatiotemporal model about the process to be controlled. This encompasses both the egomotion state of the aircraft carrying the sensors and the relevant geometric properties of the runway and its spatial environment. The efficiency of the approach is proved both in a hardware-in-the-loop simulation and in real test flights with a twin turbo-prop aircraft. For accuracy evaluation of the data gathered, the results of differential GPS and radiometric altitude measurements have been recorded simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dickmanns ED (1992) Machine perception exploiting high-level spatio-temporal models AGARD. Lecture Series 185, Machine Perception, Hampton, Va, USA Munich Madrid

  2. Dickmanns ED, Mysliwetz B, Christians T (1990) Spatio-temporal guidance of autonomous vehicles by computer vision. IEEE Trans Sys Man Cybernet 20,: Special issue on unmanned vehicles and intelligent robotic systems. 1273–1284

  3. Mysliwetz B, Dickmanns ED (1992) Recursive 3D road and relative ego-state recognition IEEE Trans PAMI. Special issue on Interpretation of 3D Scenes. Vol. 14, 199–213

    Google Scholar 

  4. Wünsche HJ (1986) Detection and control of mobile robot motion by real-time computer vision. In: Marquino N (ed) Advances in intelligent robotics systems. Proceedings of the SPIE, vol 727, Cambridge, Mass, pp 100–109

  5. Dickmanns ED, Graefe V (1988) Dynamic monocular machine vision, Application of dynamic monocular machine vision. J Mach Vis Appl, Springer-Verlag New York 223–261

    Google Scholar 

  6. Hock C, Dickmanns ED (1992) Intelligent navigation for autonomous robots using dynamic vision. XVIIth Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS), Washington DC

  7. Proskawetz KO (1989) Ein Beitrag zur Genauigkeitssteigerung bei der Parameteridentifizierung nichtlinearer Prozesse am Beispiel der Flugzeugbewegung. Dissertation TU Braunschweig

  8. Schell FR (1992) Bordautonomer automatischer Landeanflug auf- grund bildhafter und inertialer Meßdatenauswertung. Dissertation UniBw München, München

  9. Kuhnert KD (1986) A vision system for real-time road and object recognition for vehicle guidance. In: Advances in intelligent robotic systems. Proceedings of the SPIE, vol 727. SPIE, Bellingham, Cambridge, Mass

  10. Maybeck PS (1982) Stochastic models, estimation and control, vols. 1, 2. Academic Press, New York

    Google Scholar 

  11. Bierman GJ (1977) Factorization methods for discrete sequential estimation. Academic Press, New York

    Google Scholar 

  12. Graefe V (1989) Dynamic vision systems for autonomous mobile robots. IEEE Workshop on Intelligent Robots and Systems -IROS'89;Tsukuba

  13. Dickmanns ED, Zapp A, Otto KD (1985) Ein Simulationskreis zur Entwicklung einer automatischen Fahrzeugfuehrung mit bildhaften und inertialen Signalen″. In: Breitenecker EA (ed) Simulationstechnik; Informatik-Fachberichte 85, Springer, Berlin Heidelberg New York

    Google Scholar 

  14. Otto KD (1990) Linear-quadratischer Entwurf mit Strukturvorgaben. Dissertation UniBw München, München

  15. Müller N (1992) Feedforward control for curve steering for an autonomous road vehicle. Proceedings of the IEEE International Conference Robotics and Automation, Nice, France. Comp. Soc. Press, Los Alamitos, CA, pp 200–205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schell, F.R., Dickmanns, E.D. Autonomous landing of airplanes by dynamic machine vision. Machine Vis. Apps. 7, 127–134 (1994). https://doi.org/10.1007/BF01211658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01211658

Key words

Navigation