Abstract
The 4D approach to dynamic machine vision has been validated for the application area of on-board autonomous landing approaches in the visual flight regime with computing technology available today; sensors are a video-camera, inertial gyros and an air velocity meter. The key feature of the method is the reconstruction and servo-maintained adjustment by prediction error feedback of an internal spatiotemporal model about the process to be controlled. This encompasses both the egomotion state of the aircraft carrying the sensors and the relevant geometric properties of the runway and its spatial environment. The efficiency of the approach is proved both in a hardware-in-the-loop simulation and in real test flights with a twin turbo-prop aircraft. For accuracy evaluation of the data gathered, the results of differential GPS and radiometric altitude measurements have been recorded simultaneously.
Similar content being viewed by others
References
Dickmanns ED (1992) Machine perception exploiting high-level spatio-temporal models AGARD. Lecture Series 185, Machine Perception, Hampton, Va, USA Munich Madrid
Dickmanns ED, Mysliwetz B, Christians T (1990) Spatio-temporal guidance of autonomous vehicles by computer vision. IEEE Trans Sys Man Cybernet 20,: Special issue on unmanned vehicles and intelligent robotic systems. 1273–1284
Mysliwetz B, Dickmanns ED (1992) Recursive 3D road and relative ego-state recognition IEEE Trans PAMI. Special issue on Interpretation of 3D Scenes. Vol. 14, 199–213
Wünsche HJ (1986) Detection and control of mobile robot motion by real-time computer vision. In: Marquino N (ed) Advances in intelligent robotics systems. Proceedings of the SPIE, vol 727, Cambridge, Mass, pp 100–109
Dickmanns ED, Graefe V (1988) Dynamic monocular machine vision, Application of dynamic monocular machine vision. J Mach Vis Appl, Springer-Verlag New York 223–261
Hock C, Dickmanns ED (1992) Intelligent navigation for autonomous robots using dynamic vision. XVIIth Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS), Washington DC
Proskawetz KO (1989) Ein Beitrag zur Genauigkeitssteigerung bei der Parameteridentifizierung nichtlinearer Prozesse am Beispiel der Flugzeugbewegung. Dissertation TU Braunschweig
Schell FR (1992) Bordautonomer automatischer Landeanflug auf- grund bildhafter und inertialer Meßdatenauswertung. Dissertation UniBw München, München
Kuhnert KD (1986) A vision system for real-time road and object recognition for vehicle guidance. In: Advances in intelligent robotic systems. Proceedings of the SPIE, vol 727. SPIE, Bellingham, Cambridge, Mass
Maybeck PS (1982) Stochastic models, estimation and control, vols. 1, 2. Academic Press, New York
Bierman GJ (1977) Factorization methods for discrete sequential estimation. Academic Press, New York
Graefe V (1989) Dynamic vision systems for autonomous mobile robots. IEEE Workshop on Intelligent Robots and Systems -IROS'89;Tsukuba
Dickmanns ED, Zapp A, Otto KD (1985) Ein Simulationskreis zur Entwicklung einer automatischen Fahrzeugfuehrung mit bildhaften und inertialen Signalen″. In: Breitenecker EA (ed) Simulationstechnik; Informatik-Fachberichte 85, Springer, Berlin Heidelberg New York
Otto KD (1990) Linear-quadratischer Entwurf mit Strukturvorgaben. Dissertation UniBw München, München
Müller N (1992) Feedforward control for curve steering for an autonomous road vehicle. Proceedings of the IEEE International Conference Robotics and Automation, Nice, France. Comp. Soc. Press, Los Alamitos, CA, pp 200–205
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Schell, F.R., Dickmanns, E.D. Autonomous landing of airplanes by dynamic machine vision. Machine Vis. Apps. 7, 127–134 (1994). https://doi.org/10.1007/BF01211658
Issue Date:
DOI: https://doi.org/10.1007/BF01211658