Abstract
We show that a quotient category of the category of all topological spaces and all open continuous mappings contains an isomorphic copy of every category as a full subcategory. We construct a functorF : K → K universal in the following sense: for every functorH : H 1 → H 2 (H 1,H 2 arbitrary) there exist full one-to-one functors φ i :H i → K such thatF o φ1 = φ2 oH (the construction proceeds in a more general setting of enriched categories).
Similar content being viewed by others
References
J. Adámek, H. Herrlich, and G. Strecker:Abstract and Concrete Categories, Wiley Interscience New York, 1990.
M. E. Adams and H. A. Priestley: De Morgan algebras are universal,Discrete Math. 66 (1987), 1–13.
E. Fried and J. Sichler: Homomorphisms of integral domains of characteristic zero,Trans. Amer. Math. Soc. 225 (1977), 163–182.
R. Fraîssé: Sur l'extension aux relations de quelques proprietés des ordres,Ann. Sci. École Norm. Sup. (3)71 (1954), 361–388.
P. Goralčík, V. Koubek, and J. Sichler: Universal varieties of (0,1)-lattices,Canad. J. Math. 42 (1990), 470–490.
G. Grätzer and J. Sichler: On the endomorphism semigroup (and category) of bounded lattices,Pacific J. Math. 35 (1970), 639–647.
F. Hausdorff:Grundzüge der Mengenlehre, Leipzig, 1914.
Z. Hedrlín and J. Lambek: How comprehensive is the category of semigroups?Algebra 11 (1969), 195–212.
J. B. Johnstone: Universal infinite partially ordered system,Proc. Amer. Math. Soc. 7 (1956), 507–514.
B. Jónsson: Universal relational system,Math. Scand. 4 (1956), 193–208.
G. M. Kelly:Basic Concepts of Enriched Category Theory, Cambridge Univ. Press, Cambridge-New York-Melbourne, 1982.
V. Koubek and J. Sichler: Universal varieties of semigroups,J. Austral. Math. Soc. Ser. A 36 (1984), 143–152.
L. Kučera: Every category is a factorization of a concrete one,J. Pure Appl. Alg. 1 (1971), 373–376.
S. Mac Lane and R. Paré: Coherence for bicategories and indexed categories,J. Pure Appl. Algebra 37 (1985), 59–80.
A. Mostowski: Über gewisse universelle Relationen,Ann. Soc. Polon. Math. 17 (1938), 117–118.
A. Pultr and V. Trnková:Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North-Holland, Amsterdam, 1980.
V. Trnková: Universal categories,Comment. Math. Univ. Carolinae 7 (1966), 143–206.
V. Trnková and J. Reiterman: The categories of presheaves containing any category of algebras,Dissertationes Mathematicae 124 (1975), 1–58.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Trnková, V. Universalities. Appl Categor Struct 2, 173–185 (1994). https://doi.org/10.1007/BF00873298
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00873298