Universalities | Applied Categorical Structures
Skip to main content

Universalities

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We show that a quotient category of the category of all topological spaces and all open continuous mappings contains an isomorphic copy of every category as a full subcategory. We construct a functorF : K → K universal in the following sense: for every functorH : H 1 → H 2 (H 1,H 2 arbitrary) there exist full one-to-one functors φ i :H i → K such thatF o φ1 = φ2 oH (the construction proceeds in a more general setting of enriched categories).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Adámek, H. Herrlich, and G. Strecker:Abstract and Concrete Categories, Wiley Interscience New York, 1990.

    Google Scholar 

  2. M. E. Adams and H. A. Priestley: De Morgan algebras are universal,Discrete Math. 66 (1987), 1–13.

    Google Scholar 

  3. E. Fried and J. Sichler: Homomorphisms of integral domains of characteristic zero,Trans. Amer. Math. Soc. 225 (1977), 163–182.

    Google Scholar 

  4. R. Fraîssé: Sur l'extension aux relations de quelques proprietés des ordres,Ann. Sci. École Norm. Sup. (3)71 (1954), 361–388.

    Google Scholar 

  5. P. Goralčík, V. Koubek, and J. Sichler: Universal varieties of (0,1)-lattices,Canad. J. Math. 42 (1990), 470–490.

    Google Scholar 

  6. G. Grätzer and J. Sichler: On the endomorphism semigroup (and category) of bounded lattices,Pacific J. Math. 35 (1970), 639–647.

    Google Scholar 

  7. F. Hausdorff:Grundzüge der Mengenlehre, Leipzig, 1914.

  8. Z. Hedrlín and J. Lambek: How comprehensive is the category of semigroups?Algebra 11 (1969), 195–212.

    Google Scholar 

  9. J. B. Johnstone: Universal infinite partially ordered system,Proc. Amer. Math. Soc. 7 (1956), 507–514.

    Google Scholar 

  10. B. Jónsson: Universal relational system,Math. Scand. 4 (1956), 193–208.

    Google Scholar 

  11. G. M. Kelly:Basic Concepts of Enriched Category Theory, Cambridge Univ. Press, Cambridge-New York-Melbourne, 1982.

    Google Scholar 

  12. V. Koubek and J. Sichler: Universal varieties of semigroups,J. Austral. Math. Soc. Ser. A 36 (1984), 143–152.

    Google Scholar 

  13. L. Kučera: Every category is a factorization of a concrete one,J. Pure Appl. Alg. 1 (1971), 373–376.

    Google Scholar 

  14. S. Mac Lane and R. Paré: Coherence for bicategories and indexed categories,J. Pure Appl. Algebra 37 (1985), 59–80.

    Google Scholar 

  15. A. Mostowski: Über gewisse universelle Relationen,Ann. Soc. Polon. Math. 17 (1938), 117–118.

    Google Scholar 

  16. A. Pultr and V. Trnková:Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North-Holland, Amsterdam, 1980.

    Google Scholar 

  17. V. Trnková: Universal categories,Comment. Math. Univ. Carolinae 7 (1966), 143–206.

    Google Scholar 

  18. V. Trnková and J. Reiterman: The categories of presheaves containing any category of algebras,Dissertationes Mathematicae 124 (1975), 1–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trnková, V. Universalities. Appl Categor Struct 2, 173–185 (1994). https://doi.org/10.1007/BF00873298

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00873298

Mathematics Subject Classifications (1991)

Key words