Orientational sampling and rigid-body minimization in molecular docking revisited: On-the-fly optimization and degeneracy removal | Journal of Computer-Aided Molecular Design Skip to main content
Log in

Orientational sampling and rigid-body minimization in molecular docking revisited: On-the-fly optimization and degeneracy removal

  • Research Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Strategies for computational association of molecular components entail a compromise between configurational exploration and accurate evaluation. Following the work of Meng et al. [Proteins, 17 (1993) 266], we investigate issues related to sampling and optimization in molecular docking within the context of the DOCK program. An extensive analysis of diverse sampling conditions for six receptor-ligand complexes has enabled us to evaluate the tractability and utility of on-the-fly force-field score minimization, as well as the method for configurational exploration. We find that the sampling scheme in DOCK is extremely robust in its ability to produce configurations near to those experimentally observed. Furthermore, despite the heavy resource demands of refinement, the incorporation of a rigid-body, grid-based simplex minimizer directly into the docking process results in a docking strategy that is more efficient at retrieving experimentally observed configurations than docking in the absence of optimization. We investigate the capacity for further performance enhancement by implementing a degeneracy checking protocol aimed at circumventing redundant optimizations of geometrically similar orientations. Finally, we present methods that assist in the selection of sampling levels appropriate to desired result quality and available computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaney, J.M. and Dixon, J.S., Perspect. Drug Discov. Design, 1 (1993) 301.

    Google Scholar 

  2. Kuntz, I.D., Meng, E.C. and Shoichet, B.K., Acc. Chem. Res., 27 (1994) 117.

    Google Scholar 

  3. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    PubMed  Google Scholar 

  4. Shoichet, B.K., Bodian, D.L. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 380.

    Google Scholar 

  5. Meng, E.C., Shoichet, B.K. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 505.

    Google Scholar 

  6. Meng, E.C., Gschwend, D.A., Blaney, J.M. and Kuntz, I.D., Proteins, 17 (1993) 266.

    PubMed  Google Scholar 

  7. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., MeyerJr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    PubMed  Google Scholar 

  8. Ji, X., Zhang, P., Armstrong, R.N. and Gilliland, G.L., Biochemistry, 31 (1992) 10169.

    PubMed  Google Scholar 

  9. Vyas, N.K., Vyas, M.N. and Quiocho, F.A., Science, 242 (1988) 1290.

    PubMed  Google Scholar 

  10. Rees, D.C. and Lipscomb, W.N., Proc. Natl. Acad. Sci. USA, 80 (1983) 7151.

    PubMed  Google Scholar 

  11. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J., J. Biol. Chem., 257 (1982) 13650.

    PubMed  Google Scholar 

  12. Borah, B., Chen, C.-W., Egan, W., Miller, M., Wlodawer, A. and Cohen, J.S., Biochemistry, 24 (1985) 2058.

    PubMed  Google Scholar 

  13. Shoichet, B.K. and Kuntz, I.D., Protein Eng., 7 (1993) 723.

    Google Scholar 

  14. Nelder, J.A. and Mead, R., Comput. J., 7 (1965) 308.

    Google Scholar 

  15. Ferro, D.R. and Hermans, J., Acta Crystallogr., A33 (1977) 345.

    Google Scholar 

  16. Knuth, D.E., The Art of Computer Programming, Vol. 3, Addison-Wesley, Menlo Park, CA, 1973, pp. 506–549.

    Google Scholar 

  17. Fletcher, R., Practical Methods of Optimization, Interscience, New York, NY, 1960.

    Google Scholar 

  18. Gschwend, D.A., Good, A.C. and Kuntz, I.D., J. Mol. Recogn., in press.

  19. Goodsell, D.S. and Olson, A.J., Proteins, 8 (1990) 195.

    PubMed  Google Scholar 

  20. Hart, T.N. and Read, R.J., Proteins, 13 (1992) 206.

    PubMed  Google Scholar 

  21. Yamada, M. and Itai, A., Chem. Pharm. Bull., 41 (1993) 1200.

    Google Scholar 

  22. Miller, M.D., Kearsley, S.K., Underwood, D.J. and Sheridan, R.P., J. Comput.-Aided Mol. Design, 8 (1994) 153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gschwend, D.A., Kuntz, I.D. Orientational sampling and rigid-body minimization in molecular docking revisited: On-the-fly optimization and degeneracy removal. J Computer-Aided Mol Des 10, 123–132 (1996). https://doi.org/10.1007/BF00402820

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402820

Keywords

Navigation