The family of one-counter languages is closed under quotient | Acta Informatica Skip to main content
Log in

The family of one-counter languages is closed under quotient

  • Published:
Acta Informatica Aims and scope Submit manuscript

Summary

We study, first, the operation of quotient in connection with rational transductions. We show, afterwards, that Rocl, the family of one counter languages is closed under quotient by a context-free language. On the contrary, every recursively enumerable language is the quotient of two linear languages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Autebert, J.M.: Non-principalité du cylindre des langages à compteurs. Math. Syst. Theory 11, 157–167 (1977)

    Google Scholar 

  2. Baker, B.S., Book, R.V.: Reversal-bounded Multipushdown Machines. J. Comput. Syst. Sci. 8, 315–332 (1974)

    Google Scholar 

  3. Beauquier, J.: Independence of linear and one-counter generators. In: Fundamentals of Computation Theory, pp. 45–51. Berlin: Akademie 1979

    Google Scholar 

  4. Berstel, J.: Transductions and context-free languages. Stuttgart: Teubner 1979

    Google Scholar 

  5. Boasson, L.: Two Iteration theorems for some families of languages. J. Comput. Syst. Sci. 7, 583–596 (1973)

    Google Scholar 

  6. Book, R.V., Jantzen, M., Wrathall, C.: Monadic Thue Systems. Theor. Comput. Sci. 19, 231–251 (1982)

    Google Scholar 

  7. Ginsburg, S.: Algebraic and Automata-Theoretic properties of Formal Languages. Amsterdam: North-Holland 1975

    Google Scholar 

  8. Greibach, S.: One-counter languages and the IRS condition. J. Comput. Syst. Sci. 10, 237–247 (1975)

    Google Scholar 

  9. Greibach, S.: A note on the recognition of one-counter languages. RAIRO, Inf. Theor. R2, 5–12 (1975)

    Google Scholar 

  10. Greibach, S.: Remarks on blind and partially blind one-way multi-counter machines. Theor. Comput. Sci. 7, 311–324 (1978)

    Google Scholar 

  11. Greibach, S.: One-counter languages and the chevron operation. RAIRO, Inf. Theor. 13, 189–194 (1979)

    Google Scholar 

  12. Harrison, M.A.: Introduction to Formal Language Theory. Reading, MA.: Addison Wesley 1978

    Google Scholar 

  13. Jantzen, M.: On the hierarchy of Petri Net languages. RAIRO, Inf. Theor. 13, 19–30 (1979)

    Google Scholar 

  14. Jantzen, M.: The power of synchronizing operations on strings. Theor. Comput. Sci. 14, 127–154 (1981)

    Google Scholar 

  15. Latteux, M.: Langages commutatifs. Thesis, Lille 1, 1978

  16. Latteux, M.: Langages à un compteur. J. Comput. Syst. Sci. 26, 14–33 (1983)

    Google Scholar 

  17. Latteux, M., Rozenberg, G.: Commutative one-counter languages are regular. J. Comput. Syst. Sci. 29, 54–57 (1984)

    Google Scholar 

  18. Nivat, M.: Transductions des langages de Chomsky. Ann. Inst. Fourier, Grenoble 18, 339–455 (1967)

    Google Scholar 

  19. Ratoandromanana, B.: Ordre et quotient dans les familles de langages algébriques. Thesis, University of Lille 1, 1984

  20. Turakainen, P.: On characterization of recursively enumerable languages in terms of linear languages and VW-grammars. Proc. K. Ned. Akad. Wet., Amsterdam 81, 145–153 (1978)

    Google Scholar 

  21. Yntema, M.K.: Inclusion relations among families of context-free languages. Inf. Control 10, 572–597 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latteux, M., Leguy, B. & Ratoandromanana, B. The family of one-counter languages is closed under quotient. Acta Informatica 22, 579–588 (1985). https://doi.org/10.1007/BF00267045

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00267045

Keywords

Navigation