Summary
The redox capacities of p-benzoquinone (I) and its analogs p-benzoquinone imine (VI) and p-benzoquinone diimine (XI) as the simplest model systems for the biochemically important quinone site of the pharmacophores of the anthracyclines has been investigated by AM1 semi-empirical and ab initio methods. The reductive activation of the parent (Q) model systems to their various redox states (quinone radical anion (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyuamaaCa% aaleqabaGabeylayaazaaaaaaa!37BD!\[{\text{Q}}^{{\text{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ - } }}} \]), semiquinone (QH⋅), semiquinone anion (QH-) and hydroquinone (QH2)), the internal geometrical reorganization and the redox capacities of the redox states have been examined by using energy-partitioning analysis, reaction enthalpies/energies for electron and proton attachments, adiabatic ionization potentials (IPad) and electron affinities (EAad), adiabatic electronegativities (Xad), dipole moments, electrostatic potentials and spin-density surfaces. EAad data and results of energy-partitioning analysis suggest that the one-electron Q to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyuamaaCa% aaleqabaGabeylayaazaaaaaaa!37BD!\[{\text{Q}}^{{\text{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ - } }}} \] reducibility of VI is diminished when compared to that of I. The data also predict that reduction to QH⋅, QH- and QH2 is more favorable in VI (cf. I). Deprotonation enthalpy/energy calculations predict that the oxidizability of the reduced forms of VI is diminished when compared to I. Overall, the calculations suggest that the redox cycling of VI should be diminished if deprotonation is the first step of the autoxidation of the reduced forms. The results suggest that the electron affinity of Q and deprotonation of the reduced forms (e.g., QH⋅) may play important roles in the redox cycling of the anthracyclines. It is further suggested that these same factors are probably responsible for the reduced toxicity of 5-iminodaunomycin, which consists of VI as part of its pharmacophore. A comparison of the AM1 results with ab initio results suggests that the AM1 method is capable of predicting trends in redox capacity, nucleophilicity, electrophilicity and electron affinity in the systems investigated.
Similar content being viewed by others
References
Lace J.K. and Curran C.F., In Baskin S.I. (Ed.) Principles of Cardiac Toxicology, CRC Press, Boca Raton, FL, U.S.A., 1991, and references cited therein.
Halliwell B. and Gutteridge J.M.C., Free Radicals in Biology and Medicine, 2nd ed., Clarendon Press, Oxford, U.K., 1989, p. 327.
Robinson H.H. and Kahn S.D., J. Am. Chem. Soc., 112 (1990) 4728.
Blum R.H. and Carter S.K., Ann. Intern. Med., 80 (1974) 249.
Skougard T. and Nissen N.I., Dan. Med. Bull., 22 (1975) 62.
Carter S.K., J. Nat. Cancer Inst., 55 (1975) 1265.
Arcamone F., Doxorubicin: Anticancer Antibiotics, Academic Press, New York, NY, U.S.A., 1981.
Handa K. and Sato S., Gann, 66 (1975) 43.
Handa K. and Sato S., Gann, 67 (1976) 523.
Sato S., Iwazumi M. and Handa K., Gann, 68, (1977) 603.
BoucekJr. R.J., Olson R.O., Brenner D.E., Ogunbunmi E.M., Inui M. and Fleisher S., J. Biol. Chem., 262 (1987) 15851.
Takanashi S. and Bachur N.R., Drug Metab. Dispos., 4 (1976) 79.
Angle S.R. and Yang W., J. Am. Chem. Soc., 112 (1990) 4524, and references cited therein.
Favandon K., Biochemie, 64 (1982) 457.
Lown J.W., Acc. Chem. Res., 15 (1982) 381.
Dodd N.J.F. and Mucherjee T., Biochem. Pharmacol., 33 (1984) 379.
Nohland H. and Jordan W., Biochem. Biophys. Res. Commun., 114 (1983) 197.
Myers C.E., Muinda J.R.F., Zweier J. and Sinha B.K., J. Biol. Chem., 262 (1987) 11571, and references cited therein.
Lown J.W., Chen H.H. and Plambeck J.A., Biochem. Pharmacol., 28 (1979) 2563.
Lown J.W., Chen H.H. and Plambeck J.A., Biochem. Pharmacol., 31 (1982) 575.
Vavies K.J.A., Doroshow J.H. and Hochstein H.P., FEBS Lett., 153 (1983) 227.
Mimnaugh E.G., Trush M.A., Ciarrocchi E.G., Lestingi M., Fontana M., Spadasi S. and Montecucco A., Biochem. J., 279 (1991) 141.
Nafzinger J., Auclair C., Florent J.C., Guillosson J.J. and Monneret C., Lechemie Res., 15 (1991) 709.
Mimnaugh E.G., Trush M.A., Ginsburg E. and Gram T.E., Cancer Res., 42 (1982) 3574.
Abdella B.R.J. and Fisher J., Environ. Health Perspect., 64 (1985) 3.
Bird D.M., Boldt M. and Koch T.H., J. Am. Chem. Soc., 109 (1987) 4046.
Dewar M.J.S., Zoebisch E.G., Healy E.F. and Stewart J.J.P., J. Am. Chem. Soc., 107 (1985) 3902. The RHF-HE method was invoked by using the key work ROHF (restricted open-shell HF) which actually defaults to the half-electron approximation. We acknowledge the comments of a reviewer for bringing this to our attention.
PCMODEL, Serena Software, Bloomington, IN, U.S.A., 1989.
AMPAC (v. 4.5), Semichem, Shawnee, KS, U.S.A., 1993.
Stewart J.J.P., Quantum Chemistry Program Exchange (QCPE), No. 455, Department of Chemistry, Indiana University, Bloomington, IN, U.S.A., 1989.
SPARTAN (v. 3.1), Wavefunction Inc., Irvine, CA, U.S.A., 1994.
Frisch M.J., Trucks G.W., Head-Gordon M., Gill P.M.W., Wong M.W., Foresman J.B., Johnson B.G., Schlegel H.B., Robb M.A., Replogle E.S., Gomperts R., Andres J.L., Ragharachari K., Binkley J.S., Gonsalez C., Martin R.L., Fox D.J., Defrees D.J., Baker J., Stewart J.J.P. and Pople J.A., GAUSSIAN92/DFT, Gaussian Inc., Pittsburgh, PA, U.S.A., 1992.
Koopmans T., Physica, 1 (1934) 104.
Fukui K., Acc. Chem. Res. 4 (1971) 57.
Parr R.G., Donnelly R.A., Levy M. and Palke W.E., J., Chem. Phys., 68 (1978) 3801.
Parr R.G. and Pearson R.G., J. Am. Chem. Soc., 105 (1983) 7512.
Pearson R.G., Proc. Natl. Acad. Sci. USA, 83 (1980) 8440.
Brewster M.E., Huang M.J., Kaminski J.J., Pop E. and Bodor N., J. Comput. Chem., 12 (1991) 1278.
Fischer H. and Kollmar H., Theor. Chim. Acta, 16 (1970) 163.
Sawyer A., Sullivan E. and Mariam Y.H., J. Comput. Chem., 17 (1996) 204.
Eckert-Maksic' M., Bischof P. and Maksie' Z.B., J. Mol. Struct. (THEOCHEM), 139 (1986) 179.
Bischof P., J. Am. Chem. Soc., 98 (1976) 6844.
Bischof P., Croat. Chem. Acta, 53 (1980) 51, and references cited therein.
Palumbo M., Palu G. and Marciani Magno S., In Van der Goot H., Domany G., Pallos L. and Timmerman H. (Eds.) Trends in Medicinal Chemistry '88, Elsevier, New York, NY, U.S.A., 1989, p. 757.
Bird D.M., Boldt M. and Koch T.H., J. Am. Chem. Soc., 109 (1987) 4046.
Isaacs N.S., Physical Organic Chemistry, Wiley, New York, NY, U.S.A., 1987, p. 163.
Heinis T., Chowdhury S., Scott S.L. and Kebarle P., J. Am. Chem. Soc., 110 (1988) 400.
Politzer P. and Murray J.S., In Lipkowitz K.B. and Boyd D.B. (Eds.) Reviews in Computational Chemistry, VCH, New York, NY, U.S.A., 1991, Chapter 7.
Hehre W.J., Practical Strategies for Electronic Structure Calculations, Wavefunction Inc., Irvine, CA, U.S.A., 1995, p. 210.
Phillips D.R. and Crothers D.M., Biochemistry, 25 (1987) 7355.
Straney D.C. and Crothers D.M., Biochemistry, 26 (1987) 1947.
Rizzo V., Sacchi N. and Menozzi M., Biochemistry, 28 (1989) 274.
Cramer C.J. and Truhlar D.G., J. Comput.-Aided Mol. Design, 4 (1990) 629.
Cramer C.J. and Truhlar D.G., J. Am. Chem. Soc., 115 (1993) 8810.
Pearson R.G., J. Chem. Educ., 64 (1987) 561.
Brey W.S., Physical Chemistry and its Biological Application, Academic Press, New York, NY, U.S.A., 1978, p. 233.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mariam, Y.H., Sawyer, A. A computational study on the relative reactivity of reductively activated 1,4-benzoquinone and its isoelectronic analogs. J Computer-Aided Mol Des 10, 441–460 (1996). https://doi.org/10.1007/BF00124475
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00124475