A computational study on the relative reactivity of reductively activated 1,4-benzoquinone and its isoelectronic analogs | Journal of Computer-Aided Molecular Design Skip to main content
Log in

A computational study on the relative reactivity of reductively activated 1,4-benzoquinone and its isoelectronic analogs

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The redox capacities of p-benzoquinone (I) and its analogs p-benzoquinone imine (VI) and p-benzoquinone diimine (XI) as the simplest model systems for the biochemically important quinone site of the pharmacophores of the anthracyclines has been investigated by AM1 semi-empirical and ab initio methods. The reductive activation of the parent (Q) model systems to their various redox states (quinone radical anion (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyuamaaCa% aaleqabaGabeylayaazaaaaaaa!37BD!\[{\text{Q}}^{{\text{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ - } }}} \]), semiquinone (QH), semiquinone anion (QH-) and hydroquinone (QH2)), the internal geometrical reorganization and the redox capacities of the redox states have been examined by using energy-partitioning analysis, reaction enthalpies/energies for electron and proton attachments, adiabatic ionization potentials (IPad) and electron affinities (EAad), adiabatic electronegativities (Xad), dipole moments, electrostatic potentials and spin-density surfaces. EAad data and results of energy-partitioning analysis suggest that the one-electron Q to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyuamaaCa% aaleqabaGabeylayaazaaaaaaa!37BD!\[{\text{Q}}^{{\text{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ - } }}} \] reducibility of VI is diminished when compared to that of I. The data also predict that reduction to QH, QH- and QH2 is more favorable in VI (cf. I). Deprotonation enthalpy/energy calculations predict that the oxidizability of the reduced forms of VI is diminished when compared to I. Overall, the calculations suggest that the redox cycling of VI should be diminished if deprotonation is the first step of the autoxidation of the reduced forms. The results suggest that the electron affinity of Q and deprotonation of the reduced forms (e.g., QH) may play important roles in the redox cycling of the anthracyclines. It is further suggested that these same factors are probably responsible for the reduced toxicity of 5-iminodaunomycin, which consists of VI as part of its pharmacophore. A comparison of the AM1 results with ab initio results suggests that the AM1 method is capable of predicting trends in redox capacity, nucleophilicity, electrophilicity and electron affinity in the systems investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lace J.K. and Curran C.F., In Baskin S.I. (Ed.) Principles of Cardiac Toxicology, CRC Press, Boca Raton, FL, U.S.A., 1991, and references cited therein.

    Google Scholar 

  2. Halliwell B. and Gutteridge J.M.C., Free Radicals in Biology and Medicine, 2nd ed., Clarendon Press, Oxford, U.K., 1989, p. 327.

    Google Scholar 

  3. Robinson H.H. and Kahn S.D., J. Am. Chem. Soc., 112 (1990) 4728.

    Google Scholar 

  4. Blum R.H. and Carter S.K., Ann. Intern. Med., 80 (1974) 249.

    Google Scholar 

  5. Skougard T. and Nissen N.I., Dan. Med. Bull., 22 (1975) 62.

    Google Scholar 

  6. Carter S.K., J. Nat. Cancer Inst., 55 (1975) 1265.

    Google Scholar 

  7. Arcamone F., Doxorubicin: Anticancer Antibiotics, Academic Press, New York, NY, U.S.A., 1981.

    Google Scholar 

  8. Handa K. and Sato S., Gann, 66 (1975) 43.

    Google Scholar 

  9. Handa K. and Sato S., Gann, 67 (1976) 523.

    Google Scholar 

  10. Sato S., Iwazumi M. and Handa K., Gann, 68, (1977) 603.

    Google Scholar 

  11. BoucekJr. R.J., Olson R.O., Brenner D.E., Ogunbunmi E.M., Inui M. and Fleisher S., J. Biol. Chem., 262 (1987) 15851.

    Google Scholar 

  12. Takanashi S. and Bachur N.R., Drug Metab. Dispos., 4 (1976) 79.

    Google Scholar 

  13. Angle S.R. and Yang W., J. Am. Chem. Soc., 112 (1990) 4524, and references cited therein.

    Google Scholar 

  14. Favandon K., Biochemie, 64 (1982) 457.

    Google Scholar 

  15. Lown J.W., Acc. Chem. Res., 15 (1982) 381.

    Google Scholar 

  16. Dodd N.J.F. and Mucherjee T., Biochem. Pharmacol., 33 (1984) 379.

    Google Scholar 

  17. Nohland H. and Jordan W., Biochem. Biophys. Res. Commun., 114 (1983) 197.

    Google Scholar 

  18. Myers C.E., Muinda J.R.F., Zweier J. and Sinha B.K., J. Biol. Chem., 262 (1987) 11571, and references cited therein.

    Google Scholar 

  19. Lown J.W., Chen H.H. and Plambeck J.A., Biochem. Pharmacol., 28 (1979) 2563.

    Google Scholar 

  20. Lown J.W., Chen H.H. and Plambeck J.A., Biochem. Pharmacol., 31 (1982) 575.

    Google Scholar 

  21. Vavies K.J.A., Doroshow J.H. and Hochstein H.P., FEBS Lett., 153 (1983) 227.

    Google Scholar 

  22. Mimnaugh E.G., Trush M.A., Ciarrocchi E.G., Lestingi M., Fontana M., Spadasi S. and Montecucco A., Biochem. J., 279 (1991) 141.

    Google Scholar 

  23. Nafzinger J., Auclair C., Florent J.C., Guillosson J.J. and Monneret C., Lechemie Res., 15 (1991) 709.

    Google Scholar 

  24. Mimnaugh E.G., Trush M.A., Ginsburg E. and Gram T.E., Cancer Res., 42 (1982) 3574.

    Google Scholar 

  25. Abdella B.R.J. and Fisher J., Environ. Health Perspect., 64 (1985) 3.

    Google Scholar 

  26. Bird D.M., Boldt M. and Koch T.H., J. Am. Chem. Soc., 109 (1987) 4046.

    Google Scholar 

  27. Dewar M.J.S., Zoebisch E.G., Healy E.F. and Stewart J.J.P., J. Am. Chem. Soc., 107 (1985) 3902. The RHF-HE method was invoked by using the key work ROHF (restricted open-shell HF) which actually defaults to the half-electron approximation. We acknowledge the comments of a reviewer for bringing this to our attention.

    Google Scholar 

  28. PCMODEL, Serena Software, Bloomington, IN, U.S.A., 1989.

  29. AMPAC (v. 4.5), Semichem, Shawnee, KS, U.S.A., 1993.

  30. Stewart J.J.P., Quantum Chemistry Program Exchange (QCPE), No. 455, Department of Chemistry, Indiana University, Bloomington, IN, U.S.A., 1989.

    Google Scholar 

  31. SPARTAN (v. 3.1), Wavefunction Inc., Irvine, CA, U.S.A., 1994.

  32. Frisch M.J., Trucks G.W., Head-Gordon M., Gill P.M.W., Wong M.W., Foresman J.B., Johnson B.G., Schlegel H.B., Robb M.A., Replogle E.S., Gomperts R., Andres J.L., Ragharachari K., Binkley J.S., Gonsalez C., Martin R.L., Fox D.J., Defrees D.J., Baker J., Stewart J.J.P. and Pople J.A., GAUSSIAN92/DFT, Gaussian Inc., Pittsburgh, PA, U.S.A., 1992.

    Google Scholar 

  33. Koopmans T., Physica, 1 (1934) 104.

    Google Scholar 

  34. Fukui K., Acc. Chem. Res. 4 (1971) 57.

    Google Scholar 

  35. Parr R.G., Donnelly R.A., Levy M. and Palke W.E., J., Chem. Phys., 68 (1978) 3801.

    Google Scholar 

  36. Parr R.G. and Pearson R.G., J. Am. Chem. Soc., 105 (1983) 7512.

    Google Scholar 

  37. Pearson R.G., Proc. Natl. Acad. Sci. USA, 83 (1980) 8440.

    Google Scholar 

  38. Brewster M.E., Huang M.J., Kaminski J.J., Pop E. and Bodor N., J. Comput. Chem., 12 (1991) 1278.

    Google Scholar 

  39. Fischer H. and Kollmar H., Theor. Chim. Acta, 16 (1970) 163.

    Google Scholar 

  40. Sawyer A., Sullivan E. and Mariam Y.H., J. Comput. Chem., 17 (1996) 204.

    Google Scholar 

  41. Eckert-Maksic' M., Bischof P. and Maksie' Z.B., J. Mol. Struct. (THEOCHEM), 139 (1986) 179.

    Google Scholar 

  42. Bischof P., J. Am. Chem. Soc., 98 (1976) 6844.

    Google Scholar 

  43. Bischof P., Croat. Chem. Acta, 53 (1980) 51, and references cited therein.

    Google Scholar 

  44. Palumbo M., Palu G. and Marciani Magno S., In Van der Goot H., Domany G., Pallos L. and Timmerman H. (Eds.) Trends in Medicinal Chemistry '88, Elsevier, New York, NY, U.S.A., 1989, p. 757.

    Google Scholar 

  45. Bird D.M., Boldt M. and Koch T.H., J. Am. Chem. Soc., 109 (1987) 4046.

    Google Scholar 

  46. Isaacs N.S., Physical Organic Chemistry, Wiley, New York, NY, U.S.A., 1987, p. 163.

    Google Scholar 

  47. Heinis T., Chowdhury S., Scott S.L. and Kebarle P., J. Am. Chem. Soc., 110 (1988) 400.

    Google Scholar 

  48. Politzer P. and Murray J.S., In Lipkowitz K.B. and Boyd D.B. (Eds.) Reviews in Computational Chemistry, VCH, New York, NY, U.S.A., 1991, Chapter 7.

    Google Scholar 

  49. Hehre W.J., Practical Strategies for Electronic Structure Calculations, Wavefunction Inc., Irvine, CA, U.S.A., 1995, p. 210.

    Google Scholar 

  50. Phillips D.R. and Crothers D.M., Biochemistry, 25 (1987) 7355.

    Google Scholar 

  51. Straney D.C. and Crothers D.M., Biochemistry, 26 (1987) 1947.

    Google Scholar 

  52. Rizzo V., Sacchi N. and Menozzi M., Biochemistry, 28 (1989) 274.

    Google Scholar 

  53. Cramer C.J. and Truhlar D.G., J. Comput.-Aided Mol. Design, 4 (1990) 629.

    Google Scholar 

  54. Cramer C.J. and Truhlar D.G., J. Am. Chem. Soc., 115 (1993) 8810.

    Google Scholar 

  55. Pearson R.G., J. Chem. Educ., 64 (1987) 561.

    Google Scholar 

  56. Brey W.S., Physical Chemistry and its Biological Application, Academic Press, New York, NY, U.S.A., 1978, p. 233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariam, Y.H., Sawyer, A. A computational study on the relative reactivity of reductively activated 1,4-benzoquinone and its isoelectronic analogs. J Computer-Aided Mol Des 10, 441–460 (1996). https://doi.org/10.1007/BF00124475

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124475

Keywords

Navigation