Modelling study of protein kinase inhibitors: Binding mode of staurosporine and origin of the selectivity of CGP 52411 | Journal of Computer-Aided Molecular Design
Skip to main content

Modelling study of protein kinase inhibitors: Binding mode of staurosporine and origin of the selectivity of CGP 52411

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A model for the binding mode of the potent protein kinase inhibitor staurosporine is proposed. Using the information provided by the crystal structure of the cyclic-AMP-dependent protein kinase, it is suggested that staurosporine, despite a seemingly unrelated chemical structure, exploits the same key hydrogen-bond interactions as ATP, the cofactor of the protein kinases, in its binding mode. The structure-activity relationships of the inhibitor and a docking analysis give strong support to this protein tyrosine kinase is rationalized on the basis of the model. It is proposed that this selectivity originates in the occupancy, by one of the anilino moieties of the inhibitor, of the region of the enzyme cleft that normally binds the ribose ring of ATP, which appears to possess a marked lipophilic character in this kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levitzki, A., Eur. J. Biochem., 226 (1994) 1.

    Google Scholar 

  2. Murray, K.J. and Coates, W.J., In Bristol, J.A. (Ed.) Annual Reports in Medicinal Chemistry, Vol. 29, Academic Press, London, 1994, pp. 255–264.

    Google Scholar 

  3. Omura, S., Iwai, Y., Hirano, A., Nakagawa, A., Awaya, J., Tsuchiya, H., Takahashi, Y. and Masuma, R., J. Antibiot., 30 (1977) 275.

    Google Scholar 

  4. Tamaoki, T., Nomoto, H., Takahashi, I., Kato, Y., Morimoto, M. and Tomita, F., Biochem. Biophys. Res. Commun., 135 (1986) 397.

    Google Scholar 

  5. Caravatti, G., Meyer, T., Fredenhagen, A., Trinks, U., Mett, H. and Fabbro, D., Bioorg. Med. Chem. Lett., 4 (1994) 399.

    Google Scholar 

  6. Bit, R.A., Davis, P.D., Elliot, L.H., Harris, W., Hill, C.H., Keech, E., Kumar, H., Lawton, G., Maw, A., Nixon, J.S., Vesey, D.R., Wadsworth, J. and Wilkinson, S.E., J. Med. Chem., 36 (1993) 21.

    Google Scholar 

  7. Trinks, U., Buchdunger, E., Furet, P., Kump, W., Mett, H., Meyer, T., Muller, M., Regenass, U., Rihs, G., Lydon, N. and Traxler, P., J. Med. Chem. 37 (1994) 1015.

    Google Scholar 

  8. Buchdunger, E., Trinks, U., Mett, H., Regenass, U., Muller, M., Meyer, T., McGlynn, E., Pinna, L.A., Traxler, P. and Lydon, N., Proc. Natl. Acad. Sci. USA, 91 (1994) 2334.

    Google Scholar 

  9. Funato, N., Takayanagi, H., Konda, Y., Toda, Y., Harigaya, Y., Iwai, Y. and Omura, S., Tetrahedron Lett., 35 (1994) 1251.

    Google Scholar 

  10. Mohamadi, F., Richards, N.G., Guida, W.C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Henrickson, T. and Still, W.C., J. Comput. Chem. 11 (1990) 440.

    Google Scholar 

  11. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Alagona, G., Profeta Jr., S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  12. Still, W.C., Tempczyk, A., Hawley, R.C. and Hendrickson, T., J. Am. Chem. Soc. 112 (1990) 6127.

    Google Scholar 

  13. Guida, W.C., Bohacek, R.S. and Erion, M.D., J. Comput. Chem., 13 (1992) 214.

    Google Scholar 

  14. Zheng, J., Knighton, D.R., Ten Eyck, L.F., Karlsson, R., Xuong, N., Taylor, S.S. and Sowadski, J.M., Biochemistry 32 (1993) 2154.

    Google Scholar 

  15. Davis, P.D., Hill, C.H., Thomas, W.A. and Whitcombe, W.A., J. Chem. Soc., Chem. Commun., (1991) 182.

  16. Davis, P.D., Elliot, L.H., Harris, W., Hill, C.H., Hurst, S.A., Keech, E., Kumar, H., Lawton, G., Nixon, J.S. and Wilkinson, S.E., J. Med. Chem. 35 (1992) 994.

    Google Scholar 

  17. Kinnel, R.B. and Scheuer, P.J., J. Org. Chem., 57 (1992) 6327.

    Google Scholar 

  18. Herbert, J.M., Seban, E. and Maffrand, J.P., Biochem. Biophys. Res. Commun., 171 (1990) 189.

    Google Scholar 

  19. Dow, R.L., Curr. Med. Chem., 1 (1994) 192.

    Google Scholar 

  20. Knighton, D.R., Zheng, J., Ten Eyck, L.F., Ashford, V.A., Xuong, N., Taylor, S.S. and Sowadski, J.M., Science, 253 (1991) 407.

    Google Scholar 

  21. Knighton, D.R., Zheng, J., Ten Eyck, L.F., Xuong, N., Taylor, S.S. and Sowadski, J.M., Science, 253 (1991) 414.

    Google Scholar 

  22. Bossemeyer, D., Engh, R.A., Kinzel, V., Ponstingl, H. and Huber, R., EMBO J., 12 (1993) 849.

    Google Scholar 

  23. De Bondt, H.L., Resenblatt, J., Jancarik, J., Jones, H.D., Morgan, D.O. and Kim, S.H., Nature, 363 (1993) 595.

    Google Scholar 

  24. Zhang, F., Strand, A., Robbins, D., Cobb, M.H. and Goldsmith, E.J., Nature, 367 (1994) 704.

    Google Scholar 

  25. Owen, D.J., Noble, M.E.M., Garman, E.F., Papageorgiou, A.C. and Johnson, L.N., Structure, 3 (1995) 467.

    Google Scholar 

  26. Xu, R.M., Carmel, G., Sweet, R.M., Kuret, J. and Cheng, X., EMBO J., 14 (1995) 1015.

    Google Scholar 

  27. Hanks, S.K., Quinn, A.M., and Hunter, T., Science, 241 (1988) 42.

    Google Scholar 

  28. Vogel, S., Freist, W. and Hoppe, J., Eur. J. Biochem., 154 (1986) 529.

    Google Scholar 

  29. Hartenstein, J.H., Aranda, J., Barth, H., Betche, H.J., Kleinschroth, J., Reck, R., Rudolph, C., Trostmann, U. and Schachtele, C., In Testa, B. (Ed.) Perspective in Medicinal Chemistry, VHCA and VCH publishers, Weinheim, 1993, pp. 99–118.

    Google Scholar 

  30. Osada, H., Takahashi, H., Tsumoda, H., Kusakabe, H. and Isono, K., J. Antibiot. 43 (1990) 163.

    Google Scholar 

  31. Knighton, D.R., Cadena, D.L., Zheng, J., Ten Eyck, L.F., Taylor, S.S., Sowadski, J.M. and Gill, G.N., Proc. Natl. Acad. Sci. USA, 90 (1993) 5001.

    Google Scholar 

  32. Summers, L., Wistow, G., Narebor, M., Moss, D., Lindley, P., Slingsky, C., Blundell, T.L., Bartunik, H. and Bartels, K., Pept. Protein Rev. 3 (1984) 147.

    Google Scholar 

  33. Morgan, R.S. and McAdon, J.M., Int. J. Pept. Protein Res. 15 (1980) 177.

    Google Scholar 

  34. Fujita-Yamaguchi, Y. and Kathuria, S., Biochem. Biophys. Res. Commun., 157 (1988) 955.

    Google Scholar 

  35. Hubbard, S.R., Wei, L., Ellis, L. and Hendrickson, W.A., Nature, 372 (1994) 746.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furet, P., Caravatti, G., Lydon, N. et al. Modelling study of protein kinase inhibitors: Binding mode of staurosporine and origin of the selectivity of CGP 52411. J Computer-Aided Mol Des 9, 465–472 (1995). https://doi.org/10.1007/BF00124317

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124317

Keywords