A Birkhoff theorem for partial algebras via completion | Applied Categorical Structures Skip to main content
Log in

A Birkhoff theorem for partial algebras via completion

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

An equational theory (a ‘Birkhoff theorem’) for functorial partial algebras is established via the corresponding theory for functorial total algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burmeister, P.: A model theoretic oriented approach to partial algebras, Introduction to theory and application of partial algebras, Pt. 1, Mathematical Research 32, Berlin, 1986.

  2. Hoehnke, H.-J.: Allgemeine Algebra der Automaten, in L. Budach and H.-J. Hoehnke, Automaten und Funktoren, Teil A, Berlin, 1975.

  3. Hoehnke, H.-J.: On partial recursive definitions and programs, in Fundamentals of Computation Theory, Internat. FCT-Conference, Poznán-Kórnik, 1977, Lecture Notes in Computer Science, Vol. 56, Berlin, 1977, pp. 260–274.

  4. Hoehnke, H.-J.: On partial algebras, in Universal Algebra, Esztergom, 1977, Colloq. Math. Soc. J. Bolyai 29, Amsterdam, 1981, pp. 373–412.

  5. Hoehnke, H.-J.: Monoidal Structure of Mal'cev Clones, Their Theories and Completions, Preprint P-Math-34/87, Karl-Weierstraß-Inst. f. Math., Akad. d. Wiss. d. DDR, Berlin, 1987.

    Google Scholar 

  6. Hoehnke, H.-J.: On certain classes of categories and monoids constructed from abstract Mal'cev clones, I, in Universal and Applied Algebra, Turawa, Poland, 1988, Proceedings of the V Universal Algebra Symposium, Singapore, 1989, pp. 149–176.

  7. Hoehnke, H.-J.: On certain classes of categories and monoids constructed from abstract Mal'cev clones, IV, in Proceedings of the IV Conference on Discrete Mathematics, Potsdam, 1993, General Algebra and Discrete Mathematics, Berlin, 1995, pp. 137–167.

    Google Scholar 

  8. Hoehnke, H.-J.: Monoidal structure of Mal'cev clones and their completions, submitted.

  9. Hoehnke, H.-J.: Remarks and problems on varieties and quasi-varieties, clones and quasiclones, submitted.

  10. Schreckenberger, J.: Über die Einbettung von dht-symmetrischen Kategorien in die Kategorie 021 der partiellen Abbildungen zwischen Mengen, Berlin: Akad. d. Wiss. d. DDR, Zentralinst. f. Math., 1980, Preprint P-12/80.

    Google Scholar 

  11. Schreckenberger, J.: Zur Theorie der dht-symmetrischen Kategorien, Diss. (B): Päd. Hochschule Potsdam, Math.-Naturwiss. Fak., Potsdam, 1984.

  12. Schreckenberger, J.: Zur Axiomatik von Kategorien partieller Morphismen, Beiträge Algebra Geom. 24 (1987), 83–98.

    Google Scholar 

  13. Schreckenberger, J.: Mehrfache Partialisierung von Kategorien, Beiträge Algebra Geom. 25 (1987), 109–122.

    Google Scholar 

  14. Vogel, H.-J.: Eine kategorientheoretische Sprache zur Beschreibung von Birkhoff-Algebren, 021 Berlin: Akad. d. Wiss. d. DDR, Inst. f. Math., 1984. (Report; R-MATH-06/84)=Diss. (B): Päd Hochschule Potsdam, Math.-Naturwiss. Fak., Potsdam, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was done with partial support of the DFG (BRD).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoehnke, HJ. A Birkhoff theorem for partial algebras via completion. Appl Categor Struct 4, 371–386 (1996). https://doi.org/10.1007/BF00122685

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122685

Mathematics Subject Classifications (1991)

Key words

Navigation