Clustering Social Touch Gestures for Human-Robot Interaction | SpringerLink
Skip to main content

Clustering Social Touch Gestures for Human-Robot Interaction

  • Conference paper
  • First Online:
Social Robotics (ICSR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14453 ))

Included in the following conference series:

  • 742 Accesses

Abstract

Social touch provides a rich non-verbal communication channel between humans and robots. Prior work has identified a set of touch gestures for human-robot interaction and described them with natural language labels (e.g., stroking, patting). Yet, no data exists on the semantic relationships between the touch gestures in users’ minds. To endow robots with touch intelligence, we investigated how people perceive the similarities of social touch labels from the literature. In an online study, 45 participants grouped 36 social touch labels based on their perceived similarities and annotated their groupings with descriptive names. We derived quantitative similarities of the gestures from these groupings and analyzed the similarities using hierarchical clustering. The analysis resulted in 9 clusters of touch gestures formed around the social, emotional, and contact characteristics of the gestures. We discuss the implications of our results for designing and evaluating touch sensing and interactions with social robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abou Chahine, R., Kwon, D., Lim, C., Park, G., Seifi, H.: Vibrotactile similarity perception in crowdsourced and lab studies. In: Seifi, H., et al. (eds.) Haptics: Science, Technology, Applications, EuroHaptics 2022. LNCS, vol. 13235, pp. 255–263. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06249-0_29

  2. Ammi, M., et al.: Haptic human-robot affective interaction in a handshaking social protocol. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 263–270 (2015)

    Google Scholar 

  3. Burns, R.B., Lee, H., Seifi, H., Faulkner, R., Kuchenbecker, K.J.: Endowing a NAO robot with practical social-touch perception. Front. Roboti. AI 86 (2022)

    Google Scholar 

  4. Burns, R.B., Seifi, H., Lee, H., Kuchenbecker, K.J.: Getting in touch with children with autism: specialist guidelines for a touch-perceiving robot. Paladyn J. Behav. Robot. 12(1), 115–135 (2021)

    Article  Google Scholar 

  5. Choi, H., et al.: Deep learning classification of touch gestures using distributed normal and shear force. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3659–3665 (2022)

    Google Scholar 

  6. Cramer, H.S., Kemper, N.A., Amin, A., Evers, V.: The effects of robot touch and proactive behaviour on perceptions of human-robot interactions. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 275–276 (2009)

    Google Scholar 

  7. Fitter, N.T., Kuchenbecker, K.J.: Analyzing human high-fives to create an effective high-fiving robot. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 156–157 (2014)

    Google Scholar 

  8. Hertenstein, M.J., Holmes, R., McCullough, M., Keltner, D.: The communication of emotion via touch. Emotion 9(4), 566 (2009)

    Article  Google Scholar 

  9. Hertenstein, M.J., Keltner, D.: Gender and the communication of emotion via touch. Sex Roles 64, 70–80 (2011)

    Article  Google Scholar 

  10. Huisman, G.: Social touch technology: a survey of haptic technology for social touch. IEEE Trans. Haptics 10(3), 391–408 (2017)

    Article  Google Scholar 

  11. Jung, M.M., Poel, M., Poppe, R., Heylen, D.K.: Automatic recognition of touch gestures in the corpus of social touch. J. Multim. User Interfaces 11(1), 81–96 (2017)

    Article  Google Scholar 

  12. Jung, M.M., Poppe, R., Poel, M., Heylen, D.K.: Touching the void-introducing cost: corpus of social touch. In: Proceedings of the International Conference on Multimodal Interaction (ICMI), pp. 120–127 (2014)

    Google Scholar 

  13. Li, B., et al.: Human robot activity classification based on accelerometer and gyroscope. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 423–424 (2016)

    Google Scholar 

  14. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview, II. Wiley Interdiscip. Rev. Data Mining Knowl. Discov. 7(6), e1219 (2017)

    Article  Google Scholar 

  15. Pelikan, H.R., Broth, M., Keevallik, L.: Are you sad, cozmo? How humans make sense of a home robot’s emotion displays. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 461–470 (2020)

    Google Scholar 

  16. Prasad, V., Koert, D., Stock-Homburg, R., Peters, J., Chalvatzaki, G.: Mild: multimodal interactive latent dynamics for learning human-robot interaction. In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 472–479 (2022)

    Google Scholar 

  17. Rognon, C., et al.: An online survey on the perception of mediated social touch interaction and device design. IEEE Trans. Haptics 15(2), 372–381 (2022)

    Google Scholar 

  18. Russell, J.: A circumplex model of affect. J. Personal. Soc. Psychol. 39, 1161–1178 (1980). https://doi.org/10.1037/h0077714

  19. Salter, T., Dautenhahn, K., te Boekhorst, R.: Learning about natural human-robot interaction styles. Robot. Auton. Syst. 54(2), 127–134 (2006)

    Article  Google Scholar 

  20. Salter, T., Michaud, F., Létourneau, D., Lee, D., Werry, I.P.: Using proprioceptive sensors for categorizing human-robot interactions. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 105–112 (2007)

    Google Scholar 

  21. Seifi, H., Vasquez, S.A., Kim, H., Fazli, P.: First-hand impressions: charting and predicting user impressions of robot hands. ACM Trans. Hum. Robot Interact. (2023)

    Google Scholar 

  22. Ternes, D., MacLean, K.E.: Designing large sets of haptic icons with rhythm. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 199–208. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69057-3_24

  23. Teyssier, M., Bailly, G., Pelachaud, C., Lecolinet, E.: Conveying emotions through device-initiated touch. IEEE Trans. Affect. Comput. (2020)

    Google Scholar 

  24. Teyssier, M., Parilusyan, B., Roudaut, A., Steimle, J.: Human-like artificial skin sensor for physical human-robot interaction. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3626–3633. IEEE (2021)

    Google Scholar 

  25. Tsogo, L., Masson, M., Bardot, A.: Multidimensional scaling methods for many-object sets: a review. Multivar. Behav. Res. 35(3), 307–319 (2000)

    Article  Google Scholar 

  26. Wang, Z., Giannopoulos, E., Slater, M., Peer, A.: Handshake: realistic human-robot interaction in haptic enhanced virtual reality. Presence 20(4), 371–392 (2011)

    Article  Google Scholar 

  27. Xu, S., Xu, C., McIntyre, S., Olausson, H., Gerling, G.J.: Subtle contact nuances in the delivery of human-to-human touch distinguish emotional sentiment. IEEE Trans. Haptics 15(1), 97–102 (2021)

    Article  Google Scholar 

  28. Yohanan, S., MacLean, K.E.: The role of affective touch in human-robot interaction: human intent and expectations in touching the haptic creature. Int. J. Soc. Robot. 4(2), 163–180 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramzi Abou Chahine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abou Chahine, R., Vasquez, S., Fazli, P., Seifi, H. (2024). Clustering Social Touch Gestures for Human-Robot Interaction. In: Ali, A.A., et al. Social Robotics. ICSR 2023. Lecture Notes in Computer Science(), vol 14453 . Springer, Singapore. https://doi.org/10.1007/978-981-99-8715-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8715-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8714-6

  • Online ISBN: 978-981-99-8715-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics