Spatiotemporal Particulate Matter Pollution Prediction Using Cloud-Edge Intelligence | SpringerLink
Skip to main content

Spatiotemporal Particulate Matter Pollution Prediction Using Cloud-Edge Intelligence

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1965))

Included in the following conference series:

  • 861 Accesses

Abstract

This study introduces a novel spatiotemporal method to predict fine dust (or PM\(_{2.5}\)) concentration levels in the air, a significant environmental and health challenge, particularly in urban and industrial locales. We capitalize on the power of AI-powered Edge Computing and Federated Learning, applying historical data spanning from 2018 to 2022 collected from four strategic sites in Mumbai: Kurla, Bandra-Kurla, Nerul, and Sector-19a-Nerul. These locations are known for high industrial activity and heavy traffic, contributing to increased pollution exposure. Our spatiotemporal model integrates the strengths of Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, with the goal to predict PM\(_{2.5}\) concentrations 24 h into the future. Other machine learning algorithms, namely Support Vector Regression (SVR), Gated Recurrent Units (GRU), and Bidirectional LSTM (BiLSTM), were evaluated within the Federated Learning framework. Performance was assessed using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and \(R^2\). The preliminary findings suggest that our CNN-LSTM model outperforms the alternatives, with a MAE of 0.466, RMSE of 0.522, and \(R^2\) of 0.9877.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://aqicn.org/forecast/mumbai/.

References

  1. Akima, H.: A new method of interpolation and smooth curve fitting based on local procedures. J. ACM (JACM) 17(4), 589–602 (1970)

    Article  MATH  Google Scholar 

  2. Alam, F., Alam, T., Ofli, F., Imran, M.: Robust training of social media image classification models. IEEE Trans. Comput. Soc. Syst. (2022)

    Google Scholar 

  3. Biondi, K., et al.: Air pollution detection system using edge computing. In: IEEE International Conference in Engineering Applications (ICEA), pp. 1–6 (2019)

    Google Scholar 

  4. Chang, Y.S., Chiao, H.T., Abimannan, S., Huang, Y.P., Tsai, Y.T., Lin, K.M.: An LSTM-based aggregated model for air pollution forecasting. Atmos. Pollut. Res. 11(8), 1451–1463 (2020)

    Article  Google Scholar 

  5. Gandotra, P., Lall, B.: Evolving air pollution monitoring systems for green 5G: from cloud to edge. In: 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO), pp. 1231–1235 (2020)

    Google Scholar 

  6. Le, D.D., et al.: Insights into multi-model federated learning: an advanced approach for air quality index forecasting. Algorithms 15(11), 434 (2022)

    Article  Google Scholar 

  7. Lin, C.Y., Chang, Y.S., Chiao, H.T., Abimannan, S.: Design a hybrid framework for air pollution forecasting. In: IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 2472–2477 (2019)

    Google Scholar 

  8. Liu, L., Zhang, J., Song, S., Letaief, K.B.: Client-edge-cloud hierarchical federated learning. In: IEEE International Conference on Communications (ICC), pp. 1–6 (2020)

    Google Scholar 

  9. Liu, Y., Nie, J., Li, X., Ahmed, S.H., Lim, W.Y.B., Miao, C.: Federated learning in the sky: aerial-ground air quality sensing framework with UAV swarms. IEEE Internet of Things J. 8(12) (2021)

    Google Scholar 

  10. Nguyen, D.V., Zettsu, K.: Spatially-distributed federated learning of convolutional recurrent neural networks for air pollution prediction. In: IEEE International Conference on Big Data (Big Data), pp. 3601–3608 (2021)

    Google Scholar 

  11. Putra, K.T., Chen, H.C., Ogiela, M.R., Chou, C.L., Weng, C.E., Shae, Z.Y.: Federated compressed learning edge computing framework with ensuring data privacy for PM2. 5 prediction in smart city sensing applications. Sensors 21(13), 4586 (2021)

    Google Scholar 

  12. Ramu, S.P., et al.: Federated learning enabled digital twins for smart cities: concepts, recent advances, and future directions. Sustain. Urban Areas 79, 103663 (2022)

    Google Scholar 

  13. Zheng, Z., Zhou, Y., Sun, Y., Wang, Z., Liu, B., Li, K.: Applications of federated learning in smart cities: recent advances, taxonomy, and open challenges. Connect. Sci. 34(1), 1–28 (2022)

    Article  Google Scholar 

  14. Zhu, Z., Wan, S., Fan, P., Letaief, K.B.: Federated multiagent actor-critic learning for age sensitive mobile-edge computing. IEEE Internet Things J. 9(2), 1053–1067 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

The second author would like to acknowledge the support received from King Fahd University of Petroleum and Minerals (KFUPM) and the fellowship support from Saudi Data and AI Authority (SDAIA) and KFUPM under SDAIA-KFUPM Joint Research Center for Artificial Intelligence Fellowship Program Grant no. JRC-AI-RFP-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Sayed M. El-Alfy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abimannan, S., El-Alfy, ES.M., Shukla, S., Satheesh, D. (2024). Spatiotemporal Particulate Matter Pollution Prediction Using Cloud-Edge Intelligence. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1965. Springer, Singapore. https://doi.org/10.1007/978-981-99-8145-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8145-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8144-1

  • Online ISBN: 978-981-99-8145-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics