Abstract
Few-shot object detection (FSOD) methods learn to detect novel objects from a few data, which also requires reusing base class data if detecting base objects is necessary. However, in some real applications, it is difficult to obtain old class data due to privacy or limited storage capacity, causing catastrophic forgetting when learning new classes. Therefore, incremental few-shot object detection (iFSOD) has attracted the attention of researchers in recent years. The iFSOD methods continuously learn novel classes and not forget learned knowledge without storing old class data. In this paper, we propose a novel method using novel-registrable weights and region-level contrastive learning (NWRC) for iFSOD. First, we use novel-registrable weights for RoI classification, which memorizes class-specific weights to alleviate forgetting old knowledge and registers new weights for novel classes. Then we propose region-level contrastive learning in the base training stage by proposal box augmentation, enhancing the generalizability of the feature representations and plasticity of the detector. We verify the effectiveness of our method on two experimental settings of iFSOD on COCO and VOC datasets. The results show that our method has the ability to learn novel classes with a few-shot dataset and not forget old classes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ajit, A., Acharya, K., Samanta, A.: A review of convolutional neural networks. In: 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), pp. 1–5 (2020). https://doi.org/10.1109/ic-ETITE47903.2020.049
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15750–15758 (2021)
Cheng, M., Wang, H., Long, Y.: Meta-learning-based incremental few-shot object detection. IEEE Trans. Circuits Syst. Video Technol. 32(4), 2158–2169 (2022). https://doi.org/10.1109/TCSVT.2021.3088545
Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with convolutional neural networks. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88, 303–338 (2010)
Fan, Q., Zhuo, W., Tang, C.K., Tai, Y.W.: Few-shot object detection with attention-RPN and multi-relation detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Ganea, D.A., Boom, B., Poppe, R.: Incremental few-shot instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1185–1194 (2021)
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)
Grill, J.B., et al.: Bootstrap your own latent - a new approach to self-supervised learning. In: Larochelle, H., et al. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 21271–21284. Curran Associates, Inc. (2020)
Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742 (2006). https://doi.org/10.1109/CVPR.2006.100
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Kang, B., Liu, Z., Wang, X., Yu, F., Feng, J., Darrell, T.: Few-shot object detection via feature reweighting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Khosla, P., et al.: Supervised contrastive learning. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 18661–18673. Curran Associates, Inc. (2020)
Li, B., Wang, C., Reddy, P., Kim, S., Scherer, S.: AirDet: few-shot detection without fine-tuning for autonomous exploration. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol. 13699, pp. 427–444. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19842-7_25
Li, P., Li, Y., Cui, H., Wang, D.: Class-incremental few-shot object detection. arXiv preprint arXiv:2105.07637 (2021)
Li, Y., et al.: Towards generalized and incremental few-shot object detection. arXiv preprint arXiv:2109.11336 (2021)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Perez-Rua, J.M., Zhu, X., Hospedales, T.M., Xiang, T.: Incremental few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Qiao, L., Zhao, Y., Li, Z., Qiu, X., Wu, J., Zhang, C.: DeFRCN: decoupled faster R-CNN for few-shot object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8681–8690 (2021)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015)
Russakovsky, O., et al.: ImageNet: large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)
Sun, B., Li, B., Cai, S., Yuan, Y., Zhang, C.: FSCE: few-shot object detection via contrastive proposal encoding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7352–7362 (2021)
Wang, X., Huang, T.E., Darrell, T., Gonzalez, J.E., Yu, F.: Frustratingly simple few-shot object detection. arXiv preprint arXiv:2003.06957 (2020)
Wu, S., Pei, W., Mei, D., Chen, F., Tian, J., Lu, G.: Multi-faceted distillation of base-novel commonality for few-shot object detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022, pp. 578–594. Springer Nature Switzerland, Cham (2022)
Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Xiang, X., Tan, Y., Wan, Q., Ma, J., Yuille, A., Hager, G.D.: Coarse-to-fine incremental few-shot learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol. 13691, pp. 205–222. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_12
Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X., Lin, L.: Meta R-CNN: towards general solver for instance-level low-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Yin, L., Perez-Rua, J.M., Liang, K.J.: Sylph: a hypernetwork framework for incremental few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9035–9045 (2022)
Acknowledgement
This work was supported in part by National Key R &D Program of China (2021ZD0112001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Tang, S. et al. (2024). Novel-Registrable Weights and Region-Level Contrastive Learning for Incremental Few-shot Object Detection. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1965. Springer, Singapore. https://doi.org/10.1007/978-981-99-8145-8_31
Download citation
DOI: https://doi.org/10.1007/978-981-99-8145-8_31
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8144-1
Online ISBN: 978-981-99-8145-8
eBook Packages: Computer ScienceComputer Science (R0)