Unsupervised Feature Selection Using Both Similar and Dissimilar Structures | SpringerLink
Skip to main content

Unsupervised Feature Selection Using Both Similar and Dissimilar Structures

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Unsupervised feature selection method is widely used to handle the rapid increasing complex and high-dimensional sparse data without labels. Many good methods have been proposed in which the relationships between the similar data points are mainly considered. The graph embedding theory is used which occupies a large proportion. Despite their achievements, the existing methods neglect the information from the most dissimilar data. In this paper, we follow the research line of graph embedding and present a novel method for unsupervised feature selection. Two different viewpoints in the positive and negative are used to keep the data structure after feature selection. Besides a Laplacian matrix by which the most similar data structure is kept, we build an additional Laplacian matrix to keep the least similar data structure. Furthermore, an efficient algorithm is designed by virtue of the existing generalized powered iteration method. Extensive experiments on six benchmark data sets are conducted to verify the state-of-the-art effectiveness and superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://archive.ics.uci.edu/dataset/54/isolet.

  2. 2.

    https://jundongl.github.io/scikit-feature/datasets.html.

References

  1. Bellal, F., Elghazel, H., Aussem, A.: A semi-supervised feature ranking method with ensemble learning. Pattern Recogn. Lett. 33(10), 1426–1433 (2012)

    Article  Google Scholar 

  2. Cai, D., Zhang, C., He, X.: Unsupervised feature selection for multi-cluster data. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 333–342 (2010)

    Google Scholar 

  3. Chen, R., Sun, N., Chen, X., Yang, M., Wu, Q.: Supervised feature selection with a stratified feature weighting method. IEEE Access 6, 15087–15098 (2018)

    Article  Google Scholar 

  4. Chen, X., Yuan, G., Nie, F., Huang, J.Z.: Semi-supervised feature selection via rescaled linear regression. In: IJCAI. vol. 2017, pp. 1525–1531 (2017)

    Google Scholar 

  5. Elghazel, H., Aussem, A.: Unsupervised feature selection with ensemble learning. Mach. Learn. 98(1–2), 157–180 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fan, K.: On a theorem of weyl concerning eigenvalues of linear transformations i. Proc. Natl. Acad. Sci. U.S.A. 35(11), 652 (1949)

    Article  MathSciNet  Google Scholar 

  7. Han, D., Kim, J.: Unsupervised simultaneous orthogonal basis clustering feature selection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 5016–5023 (2015)

    Google Scholar 

  8. Han, D., Kim, J.: Unified simultaneous clustering and feature selection for unlabeled and labeled data. IEEE transactions on neural networks and learning systems 29(12), 6083–6098 (2018)

    Article  Google Scholar 

  9. He, X., Niyogi, P.: Locality preserving projections. In: Advances in neural information processing systems. pp. 153–160 (2004)

    Google Scholar 

  10. Hou, C., Nie, F., Li, X., Yi, D., Wu, Y.: Joint embedding learning and sparse regression: A framework for unsupervised feature selection. IEEE Transactions on Cybernetics 44(6), 793–804 (2013)

    Google Scholar 

  11. Huang, J., Nie, F., Huang, H.: A new simplex sparse learning model to measure data similarity for clustering. In: Twenty-fourth international joint conference on artificial intelligence (2015)

    Google Scholar 

  12. Huang, J., Nie, F., Huang, H., Ding, C.: Robust manifold nonnegative matrix factorization. ACM Transactions on Knowledge Discovery from Data (TKDD) 8(3), 1–21 (2014)

    Article  Google Scholar 

  13. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)

    Article  Google Scholar 

  14. Li, S., Fu, Y.: Robust subspace discovery through supervised low-rank constraints. In: Proceedings of the 2014 SIAM International Conference on Data Mining. pp. 163–171. SIAM (2014)

    Google Scholar 

  15. Li, X., Zhang, H., Zhang, R., Liu, Y., Nie, F.: Generalized uncorrelated regression with adaptive graph for unsupervised feature selection. IEEE transactions on neural networks and learning systems 30(5), 1587–1595 (2018)

    Article  MathSciNet  Google Scholar 

  16. Li, Z., Yang, Y., Liu, J., Zhou, X., Lu, H.: Unsupervised feature selection using nonnegative spectral analysis. In: Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  17. Luo, M., Nie, F., Chang, X., Yang, Y., Hauptmann, A.G., Zheng, Q.: Adaptive unsupervised feature selection with structure regularization. IEEE transactions on neural networks and learning systems 29(4), 944–956 (2017)

    Article  Google Scholar 

  18. Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (coil-20) (1996)

    Google Scholar 

  19. Nie, F., Wang, X., Huang, H.: Clustering and projected clustering with adaptive neighbors. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 977–986 (2014)

    Google Scholar 

  20. Nie, F., Zhang, R., Li, X.: A generalized power iteration method for solving quadratic problem on the stiefel manifold. SCIENCE CHINA Inf. Sci. 60(11), 112101 (2017)

    Article  MathSciNet  Google Scholar 

  21. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Courier Corporation (1998)

    Google Scholar 

  22. Strehl, A., Ghosh, J.: Cluster ensembles–a knowledge reuse framework for combining multiple partitions. Journal of machine learning research 3(Dec), 583–617 (2002)

    Google Scholar 

  23. Tang, J., Alelyani, S., Liu, H.: Feature selection for classification: A review. Data classification: Algorithms and applications p. 37 (2014)

    Google Scholar 

  24. Tang, J., Hu, X., Gao, H., Liu, H.: Unsupervised feature selection for multi-view data in social media. In: Proceedings of the 2013 SIAM International Conference on Data Mining. pp. 270–278. SIAM (2013)

    Google Scholar 

  25. Thomaz, C.E., Giraldi, G.A.: A new ranking method for principal components analysis and its application to face image analysis. Image Vis. Comput. 28(6), 902–913 (2010)

    Article  Google Scholar 

  26. Xue, Y., Xue, B., Zhang, M.: Self-adaptive particle swarm optimization for large-scale feature selection in classification. ACM Transactions on Knowledge Discovery from Data (TKDD) 13(5), 1–27 (2019)

    Article  Google Scholar 

  27. Yu, Z., Luo, P., You, J., Wong, H.S., Leung, H., Wu, S., Zhang, J., Han, G.: Incremental semi-supervised clustering ensemble for high dimensional data clustering. IEEE Trans. Knowl. Data Eng. 28(3), 701–714 (2015)

    Article  Google Scholar 

  28. Zhang, R., Nie, F., Wang, Y., Li, X.: Unsupervised feature selection via adaptive multimeasure fusion. IEEE transactions on neural networks and learning systems 30(9), 2886–2892 (2019)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Z., Lai, Z., Xu, Y., Shao, L., Wu, J., Xie, G.S.: Discriminative elastic-net regularized linear regression. IEEE Trans. Image Process. 26(3), 1466–1481 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhao, Z., He, X., Cai, D., Zhang, L., Ng, W., Zhuang, Y.: Graph regularized feature selection with data reconstruction. IEEE Trans. Knowl. Data Eng. 28(3), 689–700 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiang, T., Tian, L., Li, P., Liu, J., Ye, M. (2024). Unsupervised Feature Selection Using Both Similar and Dissimilar Structures. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1961. Springer, Singapore. https://doi.org/10.1007/978-981-99-8126-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8126-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8125-0

  • Online ISBN: 978-981-99-8126-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics