Incorporating Social-Aware User Preference for Video Recommendation | SpringerLink
Skip to main content

Incorporating Social-Aware User Preference for Video Recommendation

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2023 (WISE 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14306))

Included in the following conference series:

Abstract

Modeling user interest accurately is crucial to recommendation systems. Existing works capture user interest from historical behaviors. Due to the sparsity and noise in user behavior data, behavior based models learn incomplete and sometimes inaccurate preference patterns and easily suffer from the cold user problem. In this work, we propose a social graph enhanced framework for behavior based models, namely Social4Rec. The social graph, involving multiple relation types, is extracted to find users with similar interests. It is challenging due to the trivial and sparse relations in social graph. To address the sparse relations issue, we first propose a Cluster-Calibrate-Merge network (CCM) to discover interest groups satisfying three properties: intrinsic self-organizing patterns through cluster layer, robustness to sparse relations through knowledge distillation of calibrator layer. We then use the averaged user interest representation within each group from CCM to complete each user behavior embedding and obtain relation specific interest aware embedding. To alleviate the trivial relation problem, relation specific interest aware embedding are aggregated among relation types through attention mechanism to obtain the interest aware social embedding for each user. It is combined with user behavior embedding to derive the matching score between the user and item. Both offline and online experiments on our video platform, which is one of the biggest video recommendation platforms with nearly one billion users over the world, demonstrate the superiority of our method, especially for cold users. The codes are available at https://github.com/xuanjixiao/onerec.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-Shimon, D., Tsikinovsky, A., Friedmann, M., Shapira, B., Rokach, L., Hoerle, J.: RecSys challenge 2015 and the YOOCHOOSE dataset. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 357–358 (2015)

    Google Scholar 

  2. Bobadilla, J., Ortega, F., Hernando, A., Bernal, J.: A collaborative filtering approach to mitigate the new user cold start problem. Knowl.-Based Syst. 26, 225–238 (2012)

    Article  Google Scholar 

  3. Carpenter, G.A., Grossberg, S.: The ART of adaptive pattern recognition by a self-organizing neural network. Computer 21(3), 77–88 (1988)

    Article  Google Scholar 

  4. Cheng, A., et al.: Layout-aware webpage quality assessment. arXiv preprint arXiv:2301.12152 (2023)

  5. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10 (2016)

    Google Scholar 

  6. Covington, P., Adams, J., Sargin, E.: Deep neural networks for YouTube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191–198 (2016)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. Dong, Q., et al.: I\(\hat{~}\)3 retriever: incorporating implicit interaction in pre-trained language models for passage retrieval. arXiv preprint arXiv:2306.02371 (2023)

  9. Dong, Q., et al.: Incorporating explicit knowledge in pre-trained language models for passage re-ranking. arXiv preprint arXiv:2204.11673 (2022)

  10. Dong, Q., Niu, S.: Latent graph recurrent network for document ranking. In: Jensen, C.S., et al. (eds.) DASFAA 2021. LNCS, vol. 12682, pp. 88–103. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73197-7_6

    Chapter  Google Scholar 

  11. Dong, Q., Niu, S.: Legal judgment prediction via relational learning. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 983–992 (2021)

    Google Scholar 

  12. Dong, Q., Niu, S., Yuan, T., Li, Y.: Disentangled graph recurrent network for document ranking. Data Sci. Eng. 7(1), 30–43 (2022). https://doi.org/10.1007/s41019-022-00179-3

    Article  Google Scholar 

  13. Gope, J., Jain, S.K.: A survey on solving cold start problem in recommender systems. In: 2017 International Conference on Computing, Communication and Automation (ICCCA), pp. 133–138. IEEE (2017)

    Google Scholar 

  14. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. arXiv preprint arXiv:1703.04247 (2017)

  15. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015)

    Google Scholar 

  16. Huang, C., et al.: Knowledge-aware coupled graph neural network for social recommendation. In: 35th AAAI Conference on Artificial Intelligence (AAAI) (2021)

    Google Scholar 

  17. Huang, Z., Lin, Z., Gong, Z., Chen, Y., Tang, Y.: A two-phase knowledge distillation model for graph convolutional network-based recommendation. Int. J. Intell. Syst. 37(9), 5902–5923 (2022)

    Article  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Kohonen, T., Honkela, T.: Kohonen network. Scholarpedia 2(1), 1568 (2007)

    Article  Google Scholar 

  20. Li, D., et al.: User-level microblogging recommendation incorporating social influence. J. Am. Soc. Inf. Sci. 68(3), 553–568 (2017)

    Google Scholar 

  21. Li, H., et al.: SAILER: structure-aware pre-trained language model for legal case retrieval. arXiv preprint arXiv:2304.11370 (2023)

  22. Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xDeepFM: combining explicit and implicit feature interactions for recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1754–1763 (2018)

    Google Scholar 

  23. Lu, Y., Fang, Y., Shi, C.: Meta-learning on heterogeneous information networks for cold-start recommendation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1563–1573 (2020)

    Google Scholar 

  24. Meyffret, S., Guillot, E., Médini, L., Laforest, F.: RED: a rich epinions dataset for recommender systems. Ph.D. thesis, LIRIS (2012)

    Google Scholar 

  25. Ni, J., Li, J., McAuley, J.: Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 188–197 (2019)

    Google Scholar 

  26. Qin, J., Zhang, W., Wu, X., Jin, J., Fang, Y., Yu, Y.: User behavior retrieval for click-through rate prediction. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2347–2356 (2020)

    Google Scholar 

  27. Seiffert, U.: Self-organizing neural networks: recent advances and applications (2001)

    Google Scholar 

  28. Sethi, R., Mehrotra, M.: Cold start in recommender systems-a survey from domain perspective. In: Hemanth, J., Bestak, R., Chen, J.I.Z. (eds.) Intelligent Data Communication Technologies and Internet of Things. LNDECT, vol. 57, pp. 223–232. Springer, Cham (2021). https://doi.org/10.1007/978-981-15-9509-7_19

    Chapter  Google Scholar 

  29. Su, Y., et al.: CokeBERT: contextual knowledge selection and embedding towards enhanced pre-trained language models. AI Open 2, 127–134 (2021)

    Article  Google Scholar 

  30. Sun, Y., et al.: ERNIE: enhanced representation through knowledge integration. arXiv preprint arXiv:1904.09223 (2019)

  31. Wan, M., McAuley, J.: Modeling ambiguity, subjectivity, and diverging viewpoints in opinion question answering systems. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 489–498. IEEE (2016)

    Google Scholar 

  32. Xia, L., et al.: Knowledge-enhanced hierarchical graph transformer network for multi-behavior recommendation (2021)

    Google Scholar 

  33. Xia, L., Huang, C., Xu, Y., Pei, J.: Multi-behavior sequential recommendation with temporal graph transformer. IEEE Trans. Knowl. Data Eng. 35(6), 6099–6112 (2022)

    Google Scholar 

  34. Xia, L., Xu, Y., Huang, C., Dai, P., Bo, L.: Graph meta network for multi-behavior recommendation. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 757–766 (2021)

    Google Scholar 

  35. Xie, X., et al.: T2Ranking: a large-scale Chinese benchmark for passage ranking. arXiv preprint arXiv:2304.03679 (2023)

  36. Yang, C., Pan, J., Gao, X., Jiang, T., Liu, D., Chen, G.: Cross-task knowledge distillation in multi-task recommendation. arXiv preprint arXiv:2202.09852 (2022)

  37. Yang, Y., Huang, C., Xia, L., Li, C.: Knowledge graph contrastive learning for recommendation. arXiv preprint arXiv:2205.00976 (2022)

  38. Zhang, C., Wang, H., Yang, S., Gao, Y.: A contextual bandit approach to personalized online recommendation via sparse interactions. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11440, pp. 394–406. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16145-3_31

    Chapter  Google Scholar 

  39. Zhou, G., et al.: Deep interest evolution network for click-through rate prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5941–5948 (2019)

    Google Scholar 

  40. Zhou, G., et al.: Deep interest network for click-through rate prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1059–1068 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanji Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, X., Dai, H., Dong, Q., Niu, S., Liu, Y., Liu, P. (2023). Incorporating Social-Aware User Preference for Video Recommendation. In: Zhang, F., Wang, H., Barhamgi, M., Chen, L., Zhou, R. (eds) Web Information Systems Engineering – WISE 2023. WISE 2023. Lecture Notes in Computer Science, vol 14306. Springer, Singapore. https://doi.org/10.1007/978-981-99-7254-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7254-8_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7253-1

  • Online ISBN: 978-981-99-7254-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics