Investigating the Existence of Holey Latin Squares via Satisfiability Testing | SpringerLink
Skip to main content

Investigating the Existence of Holey Latin Squares via Satisfiability Testing

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14326))

Included in the following conference series:

  • 916 Accesses

Abstract

Holey Latin square (HLS) is a special combinatorial design of interest to mathematicians and is helpful in the construction of many important structures in design theory. In this paper, we investigate the existence of HLSs satisfying the seven kinds of identities with automated reasoning techniques. We formulate this problem as propositional logic formulae. Since state-of-the-art SAT solvers have difficulty solving many HLS problems, we further propose a symmetry breaking method, called partially ordered HLS (POHLS), to eliminate isomorphic solutions. We have achieved the following goals through experimental evaluation. First, we have solved a dozen of open problems interested by mathematicians. Second, we identify the impact of different encodings. Third, we demonstrate the advantages of SAT solver over other FOL-based solvers. Fourth, we show that the proposed POHLS reduction can improve the efficiency of solving and find the complementarity between two types of symmetry breaking techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    L. Zhu, private communication with F. Ma, July 2020.

References

  1. Abel, R.J.R., Li, Y.: Some constructions for T pairwise orthogonal diagonal Latin squares based on difference matrices. Discrete Math. 338, 593–607 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Shatter: efficient symmetry-breaking for Boolean satisfiability. In: DAC, pp. 836–839 (2003)

    Google Scholar 

  3. Bennett, F.E.: The spectra of a variety of quasigroups and related combinatorial designs. Discrete Math. 77, 29–50 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT competition 2020. In: Proceedings of SAT Competition 2020 - Solver and Benchmark Descriptions (2020)

    Google Scholar 

  5. Bright, C., Cheung, K.K., Stevens, B., Kotsireas, I., Ganesh, V.: A SAT-based resolution of Lam’s problem. In: AAAI (2021)

    Google Scholar 

  6. Colbourn, C.J.: The complexity of completing partial Latin squares. Discrete Appl. Math. 8, 25–30 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colbourn, C.J.: CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton (2010)

    Book  MATH  Google Scholar 

  8. Colbourn, C.J., Klove, T., Ling, A.C.H.: Permutation arrays for powerline communication and mutually orthogonal Latin squares. IEEE Trans. Inf. Theory 50, 1289–1291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static symmetry breaking for SAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 104–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_8

    Chapter  MATH  Google Scholar 

  10. Evans, T.: Algebraic structures associated with Latin squares and orthogonal arrays. In: Proceedings of Conference on Algebraic Aspects of Combinatorics (1975)

    Google Scholar 

  11. Frisch, A.M., Peugniez, T.J., Doggett, A.J., Nightingale, P.: Solving non-Boolean satisfiability problems with stochastic local search: a comparison of encodings. J. Autom. Reason. (2005)

    Google Scholar 

  12. Fujita, M., Slaney, J.K., Bennett, F.: Automatic generation of some results in finite algebra. In: IJCAI, pp. 52–59 (1993)

    Google Scholar 

  13. Gent, I.P., Nightingale, P.: A new encoding of alldifferent into SAT. In: International Workshop on Modelling and Reformulating Constraint Satisfaction (2004) (2004)

    Google Scholar 

  14. Grant, D.A.: The Latin square principle in the design and analysis of psychological experiments. Psychol. Bull. 45, 427 (1948)

    Article  Google Scholar 

  15. Heule, M.: Schur number five. In: AAAI (2018)

    Google Scholar 

  16. Huang, P., Li, R., Liu, M., Ma, F., Zhang, J.: Efficient SAT-based minimal model generation methods for modal logic S5. In: Li, C.-M., Manyà, F. (eds.) SAT 2021. LNCS, vol. 12831, pp. 225–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80223-3_16

    Chapter  Google Scholar 

  17. Huang, P., Liu, M., Ge, C., Ma, F., Zhang, J.: Investigating the existence of orthogonal golf designs via satisfiability testing. In: ISSAC (2019)

    Google Scholar 

  18. Huang, P., Liu, M., Wang, P., Zhang, W., Ma, F., Zhang, J.: Solving the satisfiability problem of modal logic S5 guided by graph coloring. In: IJCAI (2019)

    Google Scholar 

  19. Huang, P., Ma, F., Ge, C., Zhang, J., Zhang, H.: Investigating the existence of large sets of idempotent quasigroups via satisfiability testing. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 354–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_24

    Chapter  Google Scholar 

  20. Lindner, C.C., Stinson, D.R.: Steiner pentagon systems. Discrete Math. 52, 67–74 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, F., Zhang, J.: Finding orthogonal Latin squares using finite model searching tools. Sci. China Inf. Sci. 56, 1–9 (2013)

    MathSciNet  MATH  Google Scholar 

  22. McCune, W.: Mace4 reference manual and guide. arXiv preprint cs/0310055 (2003)

    Google Scholar 

  23. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  24. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38

    Chapter  Google Scholar 

  25. Pal, S.K., Kapoor, S., Arora, A., Chaudhary, R., Khurana, J.: Design of strong cryptographic schemes based on Latin squares. J. Discrete Math. Sci. Cryptogr. 13, 233–256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Parker, E.: Computer investigation of orthogonal Latin squares of order ten. In: Proceedings of the Symposia in Applied Mathematics (1963)

    Google Scholar 

  27. Slaney, J., Fujita, M., Stickel, M.: Automated reasoning and exhaustive search: quasigroup existence problems. Comput. Math. Appl. 29, 115–132 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, H.: SATO: an efficient prepositional prover. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 272–275. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63104-6_28

    Chapter  Google Scholar 

  29. Zhang, J., Huang, Z.: Reducing symmetries to generate easier SAT instances. Electron. Notes Theor. Comput. Sci. 125, 149–164 (2005)

    Article  MATH  Google Scholar 

  30. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: IJCAI (1995)

    Google Scholar 

  31. Zhang, W., Huang, Z., Zhang, J.: Parallel execution of stochastic search procedures on reduced SAT instances. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002. LNCS (LNAI), vol. 2417, pp. 108–117. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45683-X_14

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) under grants No. 62132020 and No. 61972384. Feifei Ma is also supported by the Youth Innovation Promotion Association CAS under grant No. Y202034. The authors would like to thank Lie Zhu at SooChow University for suggesting the open problems and providing help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feifei Ma or Jian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, M. et al. (2024). Investigating the Existence of Holey Latin Squares via Satisfiability Testing. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14326. Springer, Singapore. https://doi.org/10.1007/978-981-99-7022-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7022-3_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7021-6

  • Online ISBN: 978-981-99-7022-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics