Abstract
Holey Latin square (HLS) is a special combinatorial design of interest to mathematicians and is helpful in the construction of many important structures in design theory. In this paper, we investigate the existence of HLSs satisfying the seven kinds of identities with automated reasoning techniques. We formulate this problem as propositional logic formulae. Since state-of-the-art SAT solvers have difficulty solving many HLS problems, we further propose a symmetry breaking method, called partially ordered HLS (POHLS), to eliminate isomorphic solutions. We have achieved the following goals through experimental evaluation. First, we have solved a dozen of open problems interested by mathematicians. Second, we identify the impact of different encodings. Third, we demonstrate the advantages of SAT solver over other FOL-based solvers. Fourth, we show that the proposed POHLS reduction can improve the efficiency of solving and find the complementarity between two types of symmetry breaking techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
L. Zhu, private communication with F. Ma, July 2020.
References
Abel, R.J.R., Li, Y.: Some constructions for T pairwise orthogonal diagonal Latin squares based on difference matrices. Discrete Math. 338, 593–607 (2015)
Aloul, F.A., Markov, I.L., Sakallah, K.A.: Shatter: efficient symmetry-breaking for Boolean satisfiability. In: DAC, pp. 836–839 (2003)
Bennett, F.E.: The spectra of a variety of quasigroups and related combinatorial designs. Discrete Math. 77, 29–50 (1989)
Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT competition 2020. In: Proceedings of SAT Competition 2020 - Solver and Benchmark Descriptions (2020)
Bright, C., Cheung, K.K., Stevens, B., Kotsireas, I., Ganesh, V.: A SAT-based resolution of Lam’s problem. In: AAAI (2021)
Colbourn, C.J.: The complexity of completing partial Latin squares. Discrete Appl. Math. 8, 25–30 (1984)
Colbourn, C.J.: CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton (2010)
Colbourn, C.J., Klove, T., Ling, A.C.H.: Permutation arrays for powerline communication and mutually orthogonal Latin squares. IEEE Trans. Inf. Theory 50, 1289–1291 (2004)
Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static symmetry breaking for SAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 104–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_8
Evans, T.: Algebraic structures associated with Latin squares and orthogonal arrays. In: Proceedings of Conference on Algebraic Aspects of Combinatorics (1975)
Frisch, A.M., Peugniez, T.J., Doggett, A.J., Nightingale, P.: Solving non-Boolean satisfiability problems with stochastic local search: a comparison of encodings. J. Autom. Reason. (2005)
Fujita, M., Slaney, J.K., Bennett, F.: Automatic generation of some results in finite algebra. In: IJCAI, pp. 52–59 (1993)
Gent, I.P., Nightingale, P.: A new encoding of alldifferent into SAT. In: International Workshop on Modelling and Reformulating Constraint Satisfaction (2004) (2004)
Grant, D.A.: The Latin square principle in the design and analysis of psychological experiments. Psychol. Bull. 45, 427 (1948)
Heule, M.: Schur number five. In: AAAI (2018)
Huang, P., Li, R., Liu, M., Ma, F., Zhang, J.: Efficient SAT-based minimal model generation methods for modal logic S5. In: Li, C.-M., Manyà, F. (eds.) SAT 2021. LNCS, vol. 12831, pp. 225–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80223-3_16
Huang, P., Liu, M., Ge, C., Ma, F., Zhang, J.: Investigating the existence of orthogonal golf designs via satisfiability testing. In: ISSAC (2019)
Huang, P., Liu, M., Wang, P., Zhang, W., Ma, F., Zhang, J.: Solving the satisfiability problem of modal logic S5 guided by graph coloring. In: IJCAI (2019)
Huang, P., Ma, F., Ge, C., Zhang, J., Zhang, H.: Investigating the existence of large sets of idempotent quasigroups via satisfiability testing. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 354–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_24
Lindner, C.C., Stinson, D.R.: Steiner pentagon systems. Discrete Math. 52, 67–74 (1984)
Ma, F., Zhang, J.: Finding orthogonal Latin squares using finite model searching tools. Sci. China Inf. Sci. 56, 1–9 (2013)
McCune, W.: Mace4 reference manual and guide. arXiv preprint cs/0310055 (2003)
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38
Pal, S.K., Kapoor, S., Arora, A., Chaudhary, R., Khurana, J.: Design of strong cryptographic schemes based on Latin squares. J. Discrete Math. Sci. Cryptogr. 13, 233–256 (2010)
Parker, E.: Computer investigation of orthogonal Latin squares of order ten. In: Proceedings of the Symposia in Applied Mathematics (1963)
Slaney, J., Fujita, M., Stickel, M.: Automated reasoning and exhaustive search: quasigroup existence problems. Comput. Math. Appl. 29, 115–132 (1995)
Zhang, H.: SATO: an efficient prepositional prover. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 272–275. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63104-6_28
Zhang, J., Huang, Z.: Reducing symmetries to generate easier SAT instances. Electron. Notes Theor. Comput. Sci. 125, 149–164 (2005)
Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: IJCAI (1995)
Zhang, W., Huang, Z., Zhang, J.: Parallel execution of stochastic search procedures on reduced SAT instances. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002. LNCS (LNAI), vol. 2417, pp. 108–117. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45683-X_14
Acknowledgements
This work is supported by the National Natural Science Foundation of China (NSFC) under grants No. 62132020 and No. 61972384. Feifei Ma is also supported by the Youth Innovation Promotion Association CAS under grant No. Y202034. The authors would like to thank Lie Zhu at SooChow University for suggesting the open problems and providing help.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Liu, M. et al. (2024). Investigating the Existence of Holey Latin Squares via Satisfiability Testing. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14326. Springer, Singapore. https://doi.org/10.1007/978-981-99-7022-3_38
Download citation
DOI: https://doi.org/10.1007/978-981-99-7022-3_38
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-7021-6
Online ISBN: 978-981-99-7022-3
eBook Packages: Computer ScienceComputer Science (R0)