Evolving a Better Scheduler for Diffusion Models | SpringerLink
Skip to main content

Evolving a Better Scheduler for Diffusion Models

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Abstract

AI Generated Content (AIGC) is becoming phenomenally prominent and impactful. One of the key generative algorithms used in AIGC is the diffusion model which is widely used in generative images and audio. In comparison with other generative methods such as GAN (Generative Adversarial Network) and VAE (Variational Auto Encoder), diffusion models can generate samples of higher quality. To further improve diffusion models, especially in terms of sampling speed, we propose an evolutionary algorithm in this paper. That is to enhance the noise scheduler of the diffusion framework, thereby improving both performance and sampling speed. This is the first diffusion model that incorporates evolutionary algorithms. Our experiments show that evolved schedulers can bring concrete improvement in the generative process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. Stat 1050, 17 (2017)

    Google Scholar 

  2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  3. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780–8794 (2021)

    Google Scholar 

  4. Franceschi, J.Y., et al.: Unifying GANs and score-based diffusion as generative particle models. arXiv preprint arXiv:2305.16150 (2023)

  5. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  6. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. Stat 1050, 9 (2015)

    Google Scholar 

  7. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  8. Huang, R., et al.: FastDiff: a fast conditional diffusion model for high-quality speech synthesis. In: IJCAI (2022)

    Google Scholar 

  9. Kim, D., Kim, Y., Kang, W., Moon, I.C.: Refining generative process with discriminator guidance in score-based diffusion models. Comput. Vis. Pattern Recogn. (2022)

    Google Scholar 

  10. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  11. Lam, M.W., Wang, J., Su, D., Yu, D.: BDDM: bilateral denoising diffusion models for fast and high-quality speech synthesis. In: ICLR (2022)

    Google Scholar 

  12. Lee, S.G., et al.: PriorGrad: Improving conditional denoising diffusion models with data-driven adaptive prior. In: ICLR (2021)

    Google Scholar 

  13. Luhman, E., Luhman, T.: Knowledge distillation in iterative generative models for improved sampling speed. arXiv preprint arXiv:2101.02388 (2021)

  14. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning, pp. 8162–8171. PMLR (2021)

    Google Scholar 

  15. von Platen, P., et al.: Diffusers: State-of-the-art diffusion models. https://github.com/huggingface/diffusers (2022)

  16. Salimans, T., Ho, J.: Progressive distillation for fast sampling of diffusion models. In: ICLR (2022)

    Google Scholar 

  17. San-Roman, R., Nachmani, E., Wolf, L.: Noise estimation for generative diffusion models. Comput. Vis. Pattern Recogn. (2021)

    Google Scholar 

  18. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: ICLR (2021)

    Google Scholar 

  19. Song, Y., Ermon, S.: Improved techniques for training score-based generative models. Adv. Neural. Inf. Process. Syst. 33, 12438–12448 (2020)

    Google Scholar 

  20. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. In: ICLR (2021)

    Google Scholar 

  21. Wang, Z., Zheng, H., He, P., Chen, W., Zhou, M.: Diffusion-GAN: Training GANs with diffusion. arXiv preprint arXiv:2206.02262 (2022)

  22. Xiao, Z., Kreis, K., Vahdat, A.: Tackling the generative learning trilemma with denoising diffusion GANs. In: ICLR (2022)

    Google Scholar 

  23. Yeom, T., Lee, M.: DuDGAN: improving class-conditional GANs via dual-diffusion. arXiv preprint arXiv:2305.14849 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheping Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Song, A., Sabar, N., Li, W. (2024). Evolving a Better Scheduler for Diffusion Models. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14326. Springer, Singapore. https://doi.org/10.1007/978-981-99-7022-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7022-3_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7021-6

  • Online ISBN: 978-981-99-7022-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics