MetaCity: An Edge Emulator with the Feature of Realistic Geospatial Support for Urban Computing | SpringerLink
Skip to main content

MetaCity: An Edge Emulator with the Feature of Realistic Geospatial Support for Urban Computing

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1880))

  • 406 Accesses

Abstract

The edge computing paradigm is an important supplement to the traditional cloud computing paradigm in current IoT application scenarios. However, edge computing is highly related to a specific application scenario, in which the mobility of edge devices and the geographical distribution of edge infrastructure are strongly correlated. However, it is expensive to deploy the solution in the real world and most current edge computing emulators lack realistic scenario support and mobility support. Therefore, it is challenging to evaluate whether an edge infrastructure deployment solution can satisfy the QoS (Quality-of-Service) requirement of an edge application in a cost-effective manner. In this paper, we propose and implement an edge emulator, MetaCity, which is able to effectively enforce edge computing policies and construct realistic application scenarios. MetaCity can leverage geographical data to establish an emulation environment according to the realistic infrastructure deployment strategy and emulate the mobility process of edge devices based on the actual urban road network. MetaCity can also provide an extensible network QoS monitoring module that supports the concurrent execution of various QoS monitoring in an emulated environment. In addition, MetaCity provides a user-friendly web-based graphical user interface instead of text-based configuration files. For evaluation, three smart transportation-based experiments are conducted to validate the functionality, scalability, and emulation accuracy of MetaCity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/wulin-nudt/MetaCity.

References

  1. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Pract. Exper. 41(1), 23–50 (2011)

    Google Scholar 

  2. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, pp. 1–6 (2010)

    Google Scholar 

  3. De Oliveira, R.L.S., Schweitzer, C.M., Shinoda, A.A., Prete, L.R.: Using mininet for emulation and prototyping software-defined networks. In: IEEE Colombian Conference on Communications and Computing (COLCOM), pp. 1–6. IEEE (2014)

    Google Scholar 

  4. McKeown, N., et al.: Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

    Google Scholar 

  5. Pfaff, B., Pettit, J., Amidon, K., Casado, M., Koponen, T., Shenker, S.: Extending networking into the virtualization layer. In: Hotnets (2009)

    Google Scholar 

  6. Wette, P., Dräxler, M., Schwabe, A., Wallaschek, F., Zahraee, M.H., Karl, H., Maxinet: Distributed emulation of software-defined networks. In: IFIP Networking Conference, pp. 1–9. IEEE (2014)

    Google Scholar 

  7. Peuster, M., Karl, H., van Rossem, S.: Medicine: Rapid prototyping of production-ready network services in multi-pop environments. In: 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pp. 148–153 (2016)

    Google Scholar 

  8. Merkel, D., et al.: Docker: lightweight linux containers for consistent development and deployment. Linux j 239(2), 2 (2014)

    Google Scholar 

  9. Fontes, R.R., Afzal, S., Brito, S.H., Santos, M.A., Rothenberg, C.E.: Mininet-wifi: emulating software-defined wireless networks. In: 2015 11th International Conference on Network and Service Management (CNSM), pp. 384–389. IEEE (2015)

    Google Scholar 

  10. Ahrenholz, J., Danilov, C., Henderson, T.R., Kim, J.H.: Core: a real-time network emulator. In: MILCOM 2008–2008 IEEE Military Communications Conference, pp. 1–7. IEEE, 2008

    Google Scholar 

  11. Varga, A., Hornig, R.: An overview of the omnet++ simulation environment. In: 1st International ICST Conference on Simulation Tools and Techniques for Communications, Networks and Systems (2010)

    Google Scholar 

  12. Chang, X.: Network simulations with opnet. In: Proceedings of the 31st Conference on Winter simulation: Simulation–a Bridge to the Future, vol. 1, pp. 307–314 (1999)

    Google Scholar 

  13. Fernández-Cerero, D., Fernández-Montes, A., Jakóbik, A., Kołodziej, J., Toro, M.: Score: simulator for cloud optimization of resources and energy consumption. Simul. Model. Pract. Theory 82, 160–173 (2018)

    Article  Google Scholar 

  14. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: IFOGSIM: a toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments, Software: Pract. Exper. 47(9), 1275–1296 (2017)

    Google Scholar 

  15. Mahmud, R., Pallewatta, S., Goudarzi, M., Buyya, R.: ifogsim2: an extended ifogsim simulator for mobility, clustering, and microservice management in edge and fog computing environments. J. Syst. Softw. 190, 111351 (2022)

    Article  Google Scholar 

  16. Jha, D.N., et al., IOTSIM-edge: a simulation framework for modeling the behavior of internet of things and edge computing environments. Software: Pract. Exper. 50(6), 844–867 (2020)

    Google Scholar 

  17. Sonmez, C., Ozgovde, A., Ersoy, C.: Edgecloudsim: an environment for performance evaluation of edge computing systems. Trans. Emerg. Telecommun. Technol. 29(11), e3493 (2018)

    Article  Google Scholar 

  18. Son, J., Dastjerdi, A.V., Calheiros, R.N., Ji, X., Yoon, Y., Buyya, R.: Cloudsimsdn: modeling and simulation of software-defined cloud data centers. In: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 475–484. IEEE (2015)

    Google Scholar 

  19. Mechalikh, C., Taktak, H., Moussa, F.: Pureedgesim: a simulation toolkit for performance evaluation of cloud, fog, and pure edge computing environments In: International Conference on High Performance Computing and Simulation (HPCS), pp. 700–707. IEEE (2019)

    Google Scholar 

  20. Puliafito, C., et al.: Mobfogsim: simulation of mobility and migration for fog computing. Simul. Model. Pract. Theory 101, 102062 (2020)

    Google Scholar 

  21. Nguyen, T.-D., Huh, E.-N.: Ecsim++: an INET-based simulation tool for modeling and control in edge cloud computing. In: 2018 IEEE International Conference on Edge Computing (EDGE), pp. 80–86. IEEE (2018)

    Google Scholar 

  22. Qayyum, T., Malik, A.W., Khattak, M.A.K., Khalid, O., Khan, S.U.: Fognetsim++: a toolkit for modeling and simulation of distributed fog environment. IEEE Access 6, 63 570–63 583 (2018)

    Google Scholar 

  23. Malik, A.W., Qayyum, T., Rahman, A.U., Khan, M.A., Khalid, O., Khan, S.U.: Xfogsim: a distributed fog resource management framework for sustainable IoT services. IEEE Trans. Sustain. Comput. 6(4), 691–702 (2020)

    Article  Google Scholar 

  24. Mayer, R., Graser, L., Gupta, H., Saurez, E., Ramachandran, U.: Emufog: extensible and scalable emulation of large-scale fog computing infrastructures. In: IEEE Fog World Congress (FWC), pp. 1–6. IEEE (2017)

    Google Scholar 

  25. Coutinho, A., Rodrigues, H., Prazeres, C., Greve, F.: Scalable fogbed for fog computing emulation. In: 2018 IEEE Symposium on Computers and Communications (ISCC), pp. 00 334–00 340. IEEE (2018)

    Google Scholar 

  26. Zeng, Y., Chao, M., Stoleru, R.: Emuedge: a hybrid emulator for reproducible and realistic edge computing experiments. In: 2019 IEEE International Conference on Fog Computing (ICFC), pp. 153–164. IEEE (2019)

    Google Scholar 

  27. Hasenburg, J., Grambow, M., Grünewald, E., Huk, S., Bermbach, D.: Mockfog: emulating fog computing infrastructure in the cloud, in 2019 IEEE International Conference on Fog Computing (ICFC), pp. 144–152. IEEE (2019)

    Google Scholar 

  28. Hasenburg, J., Grambow, M., Bermbach, D.: Mockfog 2.0: automated execution of fog application experiments in the cloud. IEEE Trans. Cloud Comput. (2021)

    Google Scholar 

  29. Andrés Ramiro, C., Fiandrino, C., Blanco Pizarro, A., Jiménez Mateo, P., Ludant, N., Widmer, J.: Openleon: an end-to-end emulator from the edge data center to the mobile users. In: Proceedings of the 12th International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization, pp. 19–27 (2018)

    Google Scholar 

  30. Gomez-Miguelez, I., Garcia-Saavedra, A., Sutton, P.D., Serrano, P., Cano, C., Leith, D.J.: SRSLTE: an open-source platform for lte evolution and experimentation. In: Proceedings of the Tenth ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation, and Characterization, pp. 25–32 (2016)

    Google Scholar 

  31. Symeonides, M., Georgiou, Z., Trihinas, D., Pallis, G., Dikaiakos, M.D.: Fogify: a fog computing emulation framework. In: IEEE/ACM Symposium on Edge Computing (SEC), pp. 42–54. IEEE (2020)

    Google Scholar 

  32. Ferreira, B.C., Dufour, G., Silvestre, G.: Mace: a mobile ad-hoc computing emulation framework. In: 2021 International Conference on Computer Communications and Networks (ICCCN), pp. 1–6. IEEE (2021)

    Google Scholar 

  33. Zhou, H., et al.: Cloudsstorm: a framework for seamlessly programming and controlling virtual infrastructure functions during the devops lifecycle of cloud applications. Software: Pract. Exper. 49(10), 1421–1447 (2019)

    Google Scholar 

  34. Li, M., Su, J., Liu, H., Zhao, Z., Ouyang, X., Zhou, H.: The extreme counts: modeling the performance uncertainty of cloud resources with extreme value theory. In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernandez, P., Ruiz-Cortes, A. (eds.) Service-oriented Computing: 20th International Conference, ICSOC: Seville, Spain, November 29-December 2, 2022. Proceedings, LNCS, pp. 498–512. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20984-0_35

  35. Haklay, M., Weber, P.: Openstreetmap: user-generated street maps. IEEE Pervasive comput. 7(4), 12–18 (2008)

    Article  Google Scholar 

  36. Boeing, G.: Osmnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017)

    Article  Google Scholar 

  37. Mystakidis, S.: Metaverse. Encyclopedia 2(1), 486–497 (2022)

    Article  Google Scholar 

  38. Grinberg, M.: Flask web development: developing web applications with python. O’Reilly Media, Inc. (2018)

    Google Scholar 

  39. Satyanarayan, A., Moritz, D., Wongsuphasawat, K., Heer, J.: Vega-lite: a grammar of interactive graphics. IEEE Trans. Visual. Comput. Graph. 23(1), 341–350 (2016)

    Article  Google Scholar 

  40. Pfaff, B., et al.: The design and implementation of open vswitch. In: 12th \(\{\)USENIX\(\}\) Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 15), pp. 117–130 (2015)

    Google Scholar 

  41. Almesberger, W.: Linux traffic control-next generation. In: Proceedings of the 9th International Linux System Technology Conference (Linux-Kongress 2002), pp. 95–103 (2002)

    Google Scholar 

  42. Hemminger, S., et al.: Network emulation with netem. In Linux conf au, vol. 5. Citeseer, p. 2005 (2005)

    Google Scholar 

  43. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  44. Haversine formula. https://en.wikipedia.org/wiki/Haversine_formula

  45. Log-distance path loss model. https://en.wikipedia.org/wiki/Log-distance_path_loss_model

  46. Crickard III, P.: Leaflet.js essentials. Packt Publishing Ltd (2014)

    Google Scholar 

  47. Malinen, J.: mac80211_hwsim: Software simulator of 802.11 radio (s) for mac80211, Online. Accessed, vol. 19 (2017)

    Google Scholar 

Download references

Acknowledgment

The work is supported by the National Natural Science Foundation of China under grant No. 62102434, No. 62002364 and No. U22B2005, and is partially supported by the Natural Science Foundation of Hunan Province under grant No. 2022JJ30667.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Ouyang or Huan Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, L., Yang, G., Qin, Y., Zhao, B., Ouyang, X., Zhou, H. (2023). MetaCity: An Edge Emulator with the Feature of Realistic Geospatial Support for Urban Computing. In: Yu, Z., et al. Data Science. ICPCSEE 2023. Communications in Computer and Information Science, vol 1880. Springer, Singapore. https://doi.org/10.1007/978-981-99-5971-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5971-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5970-9

  • Online ISBN: 978-981-99-5971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics