A Defect Detection Method for Small Fittings of Power Transmission Based on Improved SLIC | SpringerLink
Skip to main content

A Defect Detection Method for Small Fittings of Power Transmission Based on Improved SLIC

  • Conference paper
  • First Online:
Digital Multimedia Communications (IFTC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1766))

  • 588 Accesses

Abstract

There are a large number of small-sized hardware such as nuts, washers and pins in power transmission equipment. The inspection image of power transmission has high resolution and large image size, which makes it difficult to detect defects distributed on such small-sized hardware. This is a major pain point in transmission line inspections. In response to this pain point, Ontology researches a defect detection model for small power transmission fittings based on improved SLIC (Simple Linear Iterative Clustering) and ViT (Vision Transformer). First, the improved SLIC is used to perform superpixel segmentation and clustering on the image, highlighting the position of small fittings in the entire image, and then using the visual Transformer deep learning network trains and learns the inspection images collected by drones at the power transmission inspection site, and obtains a model capable of stably and accurately identifying the defects of small power transmission fittings. The experimental results show that the method proposed in this paper can efficiently identify the defects of small power transmission fittings under the premise of ensuring stability, with an average recognition accuracy rate of 89.2%, which has high practicability and improves the detection and identification ability of small fittings defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Peng, X., Qian, J., Mai, X., et al.: Automatic power line inspection technology of large unmanned helicopter and its application. South. Power Syst. Technol. 10(2), 24–31, 76 (2016)

    Google Scholar 

  2. Liu, Z., Du, Y., Chen, Y., et al.: Simulation and experiment on the safety distance of typical ±500 kV DC transmission lines and towers for UAV inspection. High Voltage Eng. 45(2), 426–432 (2019)

    Google Scholar 

  3. Sun, Y.: Research on 3D imaging system of UAV line laser scanning. Harbin Institute of Technology, Harbin, China (2017)

    Google Scholar 

  4. Liu, Z., Miao, X., Chen, J., et al.: Review of visible image intelligent processing for transmission line inspection. Power Syst. Technol. 44(3), 1057–1069 (2020)

    Google Scholar 

  5. Xu, H., Yu, J., Liang, C., Zhang, X.: Detection method for small metal defects of improved RPN transmission line based on GAN. Chin. J. Electron Dev. 44(06), 1409–1416 (2021)

    Google Scholar 

  6. Fang, Z., Lin, W., Fan, S., et al.: A defects recognition method for small fittings in power transmission towers based on hierarchical recognition model. Electr. Power Inf. Commun. Technol. 18(9), 9 (2020)

    Google Scholar 

  7. Fu, J., Shao, G., Wu, L., et al.: Defect detection of line facility using hierarchical model with learning algorithm. High Voltage Eng. 43(1), 272–281 (2017)

    Google Scholar 

  8. Wang, K., Wang, J., Liu, G., et al.: Using improved strategies to improve the smart recognition rate of defects in pin on power fittings. Electr. Power Eng. Technol. 38(4), 80–85 (2019)

    Google Scholar 

  9. Song, X., Zhou, L., Li, Z., et al.: Review on superpixel methods in image segmentation. J. Image Graph. 5, 599–608 (2015)

    Google Scholar 

  10. Felzenswalb, P.F., Huttenloche, R.D.P.: Efficient graph-based images segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  11. Achanta, R., Shaji, A., Smith, K., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  12. Dong, Q., Yan, K., Sun, T., Zhang, S.: Improvement of grab cut algorithm based on SLIC superpixel algorithm. Huazhong Univ. Sci. Tech. (Nat. Sci. Edn.) 44, 43–47+66 (2016)

    Google Scholar 

  13. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  14. Wu, B., et al.: Visual transformers: token-based image representation and processing for computer vision. arXiv:2006.03677 (2020)

  15. Dosovitskiy, A., et al.: An image is worth 16 × 16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  16. Gao, X., Hoi, S.C.H., Zhang, Y., et al.: Sparse online learning of image similarity. ACM Trans. Intell. Syst. Technol. 8(5), 64:1–64:22 (2017)

    Google Scholar 

  17. Zhang, Y., Gao, X., Chen, Z., et al.: Mining spatial-temporal similarity for visual tracking. IEEE Trans. Image Process. 29, 8107–8119 (2020)

    Article  MATH  Google Scholar 

  18. Li, W., Chen, Z., Gao, X., et al.: Multimodel framework for indoor localization under mobile edge computing environment. IEEE Internet Things J. 6(3), 4844–4853 (2019)

    Article  Google Scholar 

  19. Gao, X., Xie, J., Chen, Z., et al.: Dilated convolution-based feature refinement network for crowd localization. In: ACM Transactions on Multimedia Computing, Communications, and Applications (2022)

    Google Scholar 

  20. Beal, J., Kim, E., Tzeng, E., et al.: Toward transformer based object detection [J/OL]. arXiv:2012.09958 [cs.CV] (2020). https://arxiv.org/abs/2012.09958

Download references

Acknowledgment

This work was funded by the “Research on the key technology of intelligent annotation of power image based on image self-learning” program of the Big Data Center, State Grid Corporation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Wang, L., Chen, S., Ren, J., Xue, M. (2023). A Defect Detection Method for Small Fittings of Power Transmission Based on Improved SLIC. In: Zhai, G., Zhou, J., Yang, H., Yang, X., An, P., Wang, J. (eds) Digital Multimedia Communications. IFTC 2022. Communications in Computer and Information Science, vol 1766. Springer, Singapore. https://doi.org/10.1007/978-981-99-0856-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0856-1_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0855-4

  • Online ISBN: 978-981-99-0856-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics