Immersive 6DOF Roaming with Novel View Synthesis from Single Outdoor Panorama | SpringerLink
Skip to main content

Immersive 6DOF Roaming with Novel View Synthesis from Single Outdoor Panorama

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15039))

Included in the following conference series:

  • 156 Accesses

Abstract

Panoramic images and videos have become widely popular media formats. However, there are challenges in dealing with the lack of six degrees-of-freedom (6DOF) motion in panoramas. Recent advancements in novel view synthesis techniques have shown promising outcomes in indoor settings characterized by geometric structures. Nevertheless, the translation of these advancements to complex outdoor panorama, especially with single panorama as input, remains a formidable task. In this study, we propose a novel view synthesis pipeline that takes a single outdoor panorama as input. The method employs a dual-branch design that downsamples the input image to capture the global information of the complex outdoor scene and utilizes Multi-Sphere Images (MSI) for MSI-RGBA representation inference of the input panorama. To represent complex geometric shapes and multi-scale details, we introduce a high-resolution refinement branch to optimize the fine edges in the panorama, resulting in high-quality synthesized novel outdoor panorama. Our method has achieved significant performance improvements in single-image synthesis using the CARLA datasets, and it can be generalized to real outdoor panorama datasets. These endeavors contribute to advancing panoramic media towards a more comfortable immersive experience, ultimately enhancing the realism of immersive panoramic 6DOF roaming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.insta360.com/cn/product/insta360-onex2#onex2_specs.

References

  1. Attal, B., Ling, S., Gokaslan, A., Richardt, C., Tompkin, J.: Matryodshka: real-time 6dof video view synthesis using multi-sphere images. In: European Conference on Computer Vision, pp. 441–459. Springer (2020)

    Google Scholar 

  2. Boukerch, I., Takarli, B., Saidi, K., Karich, M., Meguenni, M.: Development of panoramic virtual tours system based on low cost devices. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 43, 869–874 (2021)

    Article  Google Scholar 

  3. Chen, X., Liang, H., Xu, H., Ren, S., Cai, H., Wang, Y.: Virtual view synthesis based on asymmetric bidirectional DIBR for 3d video and free viewpoint video. Appl. Sci. 10(5), 1562 (2020)

    Article  Google Scholar 

  4. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: an open urban driving simulator. In: Conference on Robot Learning, pp. 1–16. PMLR (2017)

    Google Scholar 

  5. Fehn, C.: Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV. In: Stereoscopic Displays and Virtual Reality Systems XI, vol. 5291, pp. 93–104. SPIE (2004)

    Google Scholar 

  6. Gu, S., Zhang, W., Wang, R.: Enhanced DIBR framework for free viewpoint video. In: 2021 7th International Conference on Computer and Communications (ICCC), pp. 911–916. IEEE (2021)

    Google Scholar 

  7. Guo, S., Hu, J., Zhou, K., Wang, J., Song, L., Xie, R., Zhang, W.: Real-time free viewpoint video synthesis system based on DIBR and a depth estimation network. IEEE Trans. Multimed. (2024)

    Google Scholar 

  8. Hannuksela, M.M., Wang, Y.K.: An overview of omnidirectional media format (OMAF). Proc. IEEE 109(9), 1590–1606 (2021)

    Article  Google Scholar 

  9. Hore, A., Ziou, D.: Image quality metrics: PSNR versus SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

    Google Scholar 

  10. Li, D., Zhang, Y., Häne, C., Tang, D., Varshney, A., Du, R.: Omnisyn: synthesizing 360 videos with wide-baseline panoramas. In: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 670–671. IEEE (2022)

    Google Scholar 

  11. Li, J., Feng, Z., She, Q., Ding, H., Wang, C., Lee, G.H.: Mine: Towards continuous depth MPI with nerf for novel view synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12578–12588 (2021)

    Google Scholar 

  12. Li, J., He, Y., Hu, Y., Han, Y., Wen, J.: Learning to compose 6-DoF omnidirectional videos using multi-sphere images. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 3298–3302. IEEE (2021)

    Google Scholar 

  13. Li, J., He, Y., Jiao, J., Hu, Y., Han, Y., Wen, J.: Extending 6-DoF VR experience via multi-sphere images interpolation. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4632–4640 (2021)

    Google Scholar 

  14. Li, Y., Yabuki, N., Fukuda, T.: Measuring visual walkability perception using panoramic street view images, virtual reality, and deep learning. Sustain. Urban Areas 86, 104140 (2022)

    Google Scholar 

  15. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  16. Morita, H., Hild, M., Miura, J., Shirai, Y.: Panoramic view-based navigation in outdoor environments based on support vector learning. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2302–2307. IEEE (2006)

    Google Scholar 

  17. Osman, A., Iskak, N.I., Wahab, N.A., Ibrahim, N.: Interactive virtual campus tour using panoramic video: a heuristic evaluation. J. Comput. Res. Innov. 5(4), 1–7 (2020)

    Article  Google Scholar 

  18. Pan, Q., Zeng, Q., Zhuang, Y., Yin, Z., Hai, J., Chen, G., Liang, J., Xiao, H., Yang, S.: OJUMP: optimization for joint unicast-multicast panoramic VR live streaming system. Trans. Emerg. Telecommun. Technol. 35(1), e4924 (2024)

    Article  Google Scholar 

  19. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in Pytorch (2017)

    Google Scholar 

  20. Pintore, G., Bettio, F., Agus, M., Gobbetti, E.: Deep scene synthesis of Atlanta-world interiors from a single omnidirectional image. IEEE Trans. Vis. Comput. Graph. (2023)

    Google Scholar 

  21. Tsai, H.H., Hou, X.Y., Chang, C.T., Tsai, C.Y., Yu, P.T., Roan, J.S., Chiou, K.C.: Interactive contents with 360\(^\circ \) panorama virtual reality for soil and water conservation outdoor classroom. In: 2020 International Symposium on Educational Technology (ISET), pp. 78–82. IEEE (2020)

    Google Scholar 

  22. Tucker, R., Snavely, N.: Single-view view synthesis with multiplane images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 551–560 (2020)

    Google Scholar 

  23. Waidhofer, J., Gadgil, R., Dickson, A., Zollmann, S., Ventura, J.: Panosynthvr: toward light-weight 360-degree view synthesis from a single panoramic input. In: 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 584–592. IEEE (2022)

    Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  25. Wiles, O., Gkioxari, G., Szeliski, R., Johnson, J.: Synsin: end-to-end view synthesis from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7467–7477 (2020)

    Google Scholar 

  26. Xu, J., Zheng, J., Xu, Y., Tang, R., Gao, S.: Layout-guided novel view synthesis from a single indoor panorama. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16438–16447 (2021)

    Google Scholar 

  27. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelnerf: Neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2021)

    Google Scholar 

  28. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  29. Zheng, D., Wei, L., Liu, Y., Wang, Y.: Metamars: 3dof+ roaming with panoramic stitching for Tianwen-1 mission. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    Google Scholar 

  30. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning view synthesis using multiplane images (2018). arXiv:1805.09817

  31. Zink, M., Sitaraman, R., Nahrstedt, K.: Scalable 360 video stream delivery: challenges, solutions, and opportunities. Proc. IEEE 107(4), 639–650 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62277035,62332017) and by the Shandong Province Youth Entrepreneurship Technology Support Program for Higher Education Institutions(2022KJN028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenglei Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luan, H., Wang, L., Luan, X., Gai, W., Yang, C. (2025). Immersive 6DOF Roaming with Novel View Synthesis from Single Outdoor Panorama. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15039. Springer, Singapore. https://doi.org/10.1007/978-981-97-8692-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8692-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8691-6

  • Online ISBN: 978-981-97-8692-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics