Textureness-Aware Neural Network for Edge Detection | SpringerLink
Skip to main content

Textureness-Aware Neural Network for Edge Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15034))

Included in the following conference series:

  • 118 Accesses

Abstract

Convolutional neural networks have made significant progress in edge detection by progressively exploring the context and semantic features. However, most methods struggle to produce pixel-accurate edge maps and suffer from false positives in the high-frequency texture regions of non-edge part. In this paper, We propose a new edge detection method that aims to adjust the model’s focus on different pixels in the non-edge area based on textureness and enhance the accuracy of edge detection. Specifically, we first propose a weighting strategy based on textureness and obtain a textureness-aware loss RWCE, which can guide the model to pay more attention to the learning of high-frequency texture regions during the training process, thus improving the prediction accuracy of these regions. Moreover, we design an end-to-end network which adopts the bottom-up/top-down architecture, effectively utilizing hierarchical features, progressively increasing the resolution of feature maps, and ultimately generating pixel-accurate edge maps. Our method achieves promising performance on BSDS500, BIPED, NYUD, and outperforming most previous methods. The source code of this work is available at: https://github.com/yx-yyds/TANet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertasius, G., Shi, J., Torresani, L.: Semantic segmentation with boundary neural fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3602–3610 (2016)

    Google Scholar 

  2. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  3. Deng, R., Shen, C., Liu, S., Wang, H., Liu, X.: Learning to predict crisp boundaries. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 562–578 (2018)

    Google Scholar 

  4. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2014)

    Article  Google Scholar 

  5. Fu, Y., Guo, X.: Practical edge detection via robust collaborative learning. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 2526–2534 (2023)

    Google Scholar 

  6. He, J., Zhang, S., Yang, M., Shan, Y., Huang, T.: Bi-directional cascade network for perceptual edge detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3828–3837 (2019)

    Google Scholar 

  7. Huan, L., Xue, N., Zheng, X., He, W., Gong, J., Xia, G.S.: Unmixing convolutional features for crisp edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6602–6609 (2021)

    Article  Google Scholar 

  8. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  9. Kittler, J.: On the accuracy of the sobel edge detector. Image Vis. Comput. 1(1), 37–42 (1983)

    Article  Google Scholar 

  10. Liu, Y., Cheng, M.M., Hu, X., Wang, K., Bai, X.: Richer convolutional features for edge detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3000–3009 (2017)

    Google Scholar 

  11. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

  12. Pang, X., Lin, C., Li, F., Pan, Y.: Bio-inspired xyw parallel pathway edge detection network. Expert Syst. Appl. 237, 121649 (2024)

    Article  Google Scholar 

  13. Poma, X.S., Riba, E., Sappa, A.: Dense extreme inception network: towards a robust cnn model for edge detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1923–1932 (2020)

    Google Scholar 

  14. Prewitt, J.M., et al.: Object enhancement and extraction. Picture Processi. Psychopictor. 10(1), 15–19 (1970)

    Google Scholar 

  15. Pu, M., Huang, Y., Liu, Y., Guan, Q., Ling, H.: Edter: edge detection with transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1402–1412 (2022)

    Google Scholar 

  16. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: edge-preserving interpolation of correspondences for optical flow. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1164–1172 (2015)

    Google Scholar 

  17. Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3982–3991 (2015)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. Soria, X., Li, Y., Rouhani, M., Sappa, A.D.: Tiny and efficient model for the edge detection generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1364–1373 (2023)

    Google Scholar 

  20. Soria, X., Pomboza-Junez, G., Sappa, A.D.: Ldc: lightweight dense cnn for edge detection. IEEE Access 10, 68281–68290 (2022)

    Article  Google Scholar 

  21. Su, Z., Liu, W., Yu, Z., Hu, D., Liao, Q., Tian, Q., Pietikäinen, M., Liu, L.: Pixel difference networks for efficient edge detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 5117–5127 (2021)

    Google Scholar 

  22. Tan, M., Le, Q.E.: Rethinking model scaling for convolutional neural networks. arxiv 2019. arXiv preprint arXiv:1905.11946 (1905)

  23. Tan, M., Le, Q.: Efficientnetv2: smaller models and faster training. In: International Conference on Machine Learning, pp. 10096–10106. PMLR (2021)

    Google Scholar 

  24. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  25. Wang, Y., Zhao, X., Huang, K.: Deep crisp boundaries. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3892–3900 (2017)

    Google Scholar 

  26. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)

    Google Scholar 

  27. Xiong, W., Yu, J., Lin, Z., Yang, J., Lu, X., Barnes, C., Luo, J.: Foreground-aware image inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5840–5848 (2019)

    Google Scholar 

  28. Xu, D., Ouyang, W., Alameda-Pineda, X., Ricci, E., Wang, X., Sebe, N.: Learning deep structured multi-scale features using attention-gated crfs for contour prediction. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  29. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. (TOG) 31(6), 1–10 (2012)

    Google Scholar 

  30. Xuan, W., Huang, S., Liu, J., Du, B.: Fcl-net: towards accurate edge detection via fine-scale corrective learning. Neural Netw. 145, 248–259 (2022)

    Article  Google Scholar 

  31. Ye, Y., Xu, K., Huang, Y., Yi, R., Cai, Z.: Diffusionedge: diffusion probabilistic model for crisp edge detection. arXiv preprint arXiv:2401.02032 (2024)

  32. Zhou, C., Huang, Y., Pu, M., Guan, Q., Huang, L., Ling, H.: The treasure beneath multiple annotations: an uncertainty-aware edge detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15507–15517 (2023)

    Google Scholar 

  33. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: a nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4, pp. 3–11. Springer (2018)

    Google Scholar 

  34. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part V 13, pp. 391–405. Springer (2014)

    Google Scholar 

Download references

Acknowledgement

Supported by the National Natural Science Foundation of China (Grant No.62061049, Grant No.12263008), the Yunnan Provincial Department of Science and Technology-Yunnan University Joint Special Project for Double-Class Construction (Grant No.202201BF070001-005), Yunnan Revitalization Talent Support Program (Grant No.C6213001221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, X., Cheng, L., Yuan, G., Wu, H. (2025). Textureness-Aware Neural Network for Edge Detection. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15034. Springer, Singapore. https://doi.org/10.1007/978-981-97-8505-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8505-6_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8504-9

  • Online ISBN: 978-981-97-8505-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics