Meply: A Large-scale Dataset and Baseline Evaluations for Metastatic Perirectal Lymph Node Detection and Segmentation | SpringerLink
Skip to main content

Meply: A Large-scale Dataset and Baseline Evaluations for Metastatic Perirectal Lymph Node Detection and Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15044))

Included in the following conference series:

  • 74 Accesses

Abstract

Accurate segmentation of metastatic lymph nodes in rectal cancer is crucial for the staging and treatment of rectal cancer. However, existing segmentation approaches face challenges due to the absence of pixel-level annotated datasets tailored for lymph nodes around the rectum. Additionally, metastatic lymph nodes are characterized by their relatively small size, irregular shapes, and lower contrast compared to the background, further complicating the segmentation task. To address these challenges, we present the first large-scale perirectal metastatic lymph node CT image dataset called Meply, which encompasses pixel-level annotations of 269 patients diagnosed with rectal cancer. Furthermore, we introduce a novel lymph-node segmentation model named CoSAM. The CoSAM utilizes sequence-based detection to guide the segmentation of metastatic lymph nodes in rectal cancer, contributing to improved localization performance for the segmentation model. It comprises three key components: sequence-based detection module, segmentation module, and collaborative convergence unit. To evaluate the effectiveness of CoSAM, we systematically compare its performance with several popular segmentation methods using the Meply dataset. The code can be accessed at: https://github.com/kanydao/CoSAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mediastinal lymph node quantification (lnq): Segmentation of heterogeneous ct data. https://lnq2023.grand-challenge.org/ (2023)

  2. Segmentation of organs-at-risk and gross tumor volume of npc for radiotherapy planning (segrap2023). https://segrap2023.grand-challenge.org/ (2023)

  3. Andrearczyk, V., Oreiller, V., Boughdad, S., Rest, C.C.L., Elhalawani, H., Jreige, M., Prior, J.O., Vallières, M., Visvikis, D., Hatt, M., et al.: Overview of the hecktor challenge at miccai 2021: automatic head and neck tumor segmentation and outcome prediction in pet/ct images. In: 3D Head and Neck Tumor Segmentation in PET/CT Challenge, pp. 1–37. Springer (2021)

    Google Scholar 

  4. Bouget, D., Pedersen, A., Vanel, J., Leira, H.O., Langø, T.: Mediastinal lymph nodes segmentation using 3d convolutional neural network ensembles and anatomical priors guiding. Comput. Methods Biomech. Biomed. Eng.: Imaging Visual. 11(1), 44–58 (2023)

    Google Scholar 

  5. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-unet: Unet-like pure transformer for medical image segmentation. In: European Conference on Computer Vision, pp. 205–218. Springer (2022)

    Google Scholar 

  6. Cardenas, C.E., Mohamed, A.S., Yang, J., Gooding, M., Veeraraghavan, H., Kalpathy-Cramer, J., Ng, S.P., Ding, Y., Wang, J., Lai, S.Y., et al.: Head and neck cancer patient images for determining auto-segmentation accuracy in t2-weighted magnetic resonance imaging through expert manual segmentations. Med. Phys. 47(5), 2317–2322 (2020)

    Article  Google Scholar 

  7. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  8. Huang, X., Deng, Z., Li, D., Yuan, X., Fu, Y.: Missformer: an effective transformer for 2d medical image segmentation. IEEE Trans. Med. Imaging (2022)

    Google Scholar 

  9. Ibtehaz, N., Rahman, M.S.: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Article  Google Scholar 

  10. Jha, D., Riegler, M.A., Johansen, D., Halvorsen, P., Johansen, H.D.: Doubleu-net: A deep convolutional neural network for medical image segmentation. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), pp. 558–564. IEEE (2020)

    Google Scholar 

  11. Keller, D.S., Berho, M., Perez, R.O., Wexner, S.D., Chand, M.: The multidisciplinary management of rectal cancer. Nat. Rev. Gastroenterol. Hepatol. 17(7), 414–429 (2020)

    Article  Google Scholar 

  12. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  13. Ma, J., Wang, B.: Segment anything in medical images. arXiv preprint arXiv:2304.12306 (2023)

  14. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  15. Muthusamy, V.R., Chang, K.J.: Optimal methods for staging rectal cancer. Clin. Cancer Res. 13(22), 6877s–6884s (2007)

    Article  Google Scholar 

  16. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B., et al.: Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  17. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18, pp. 234–241. Springer (2015)

    Google Scholar 

  18. Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M.: A new 2.5 d representation for lymph node detection using random sets of deep convolutional neural network observations. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014: 17th International Conference, Boston, MA, USA, September 14–18, 2014, Proceedings, Part I 17, pp. 520–527. Springer (2014)

    Google Scholar 

  19. Wang, H., Cao, P., Wang, J., Zaiane, O.R.: Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2441–2449 (2022)

    Google Scholar 

  20. Wu, J., Fu, R., Fang, H., Liu, Y., Wang, Z., Xu, Y., Jin, Y., Arbel, T.: Medical Sam adapter: adapting segment anything model for medical image segmentation. arXiv preprint arXiv:2304.12620 (2023)

  21. Yan, K., Wang, X., Lu, L., Summers, R.M.: Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501–036501 (2018)

    Article  Google Scholar 

  22. Zhang, H., Guo, W., Qiu, C., Wan, S., Zou, B., Wang, W., Jin, P.: Care: A large scale ct image dataset and clinical applicable benchmark model for rectal cancer segmentation. arXiv preprint arXiv:2308.08283 (2023)

  23. Zhang, H., Xie, R., Wan, S., Jin, P.: Decoupling mil transformer-based network for weakly supervised polyp detection. In: 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 969–973. IEEE (2023)

    Google Scholar 

  24. Zhang, H., Yang, J., Wan, S., Fua, P.: Lefusion: synthesizing myocardial pathology on cardiac MRI via lesion-focus diffusion models. arXiv preprint arXiv:2403.14066 (2024)

  25. Zhang, K., Liu, D.: Customized segment anything model for medical image segmentation. arXiv preprint arXiv:2304.13785 (2023)

Download references

Acknowledgment

This work is supported by The University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2022-056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouhong Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, W. et al. (2025). Meply: A Large-scale Dataset and Baseline Evaluations for Metastatic Perirectal Lymph Node Detection and Segmentation. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15044. Springer, Singapore. https://doi.org/10.1007/978-981-97-8496-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8496-7_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8495-0

  • Online ISBN: 978-981-97-8496-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics