Maintaining Data Freshness in Multi-channel Multi-hop Wireless Networks | SpringerLink
Skip to main content

Maintaining Data Freshness in Multi-channel Multi-hop Wireless Networks

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2024)

Abstract

Age of Information (AoI) has emerged as a new metric to quantify the freshness of data and has attracted extensive interests recently. In this paper, we investigate the first work of optimizing average AoI for data collection in a sink-based wireless networks. The problem of optimizing the average AoI of the entire network by allocating channels in an OFDM-based network is formulated. Secondly, the average AoI under the line topology is theoretically analyzed, which takes channel allocation, multi-hop routing, and queuing models into account, and the corresponding channel allocation scheduling algorithm under such a topology is studied. Then, the AoI aware channel allocation algorithm with a theoretical bound for the network with tree topology is proposed. Finally, the numerical results show that the proposed algorithm can achieve high performance in terms of AoI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, J., Guo, S., Liang, W., et al.: Digital twin-enabled service provisioning in edge computing via continual learning. IEEE Trans. Mobile Comput. (2023)

    Google Scholar 

  2. Cai, Z., et al.: Battery-free wireless sensor networks: a comprehensive survey. IEEE Internet Things J. 10(6), 5543–5570 (2023)

    Article  Google Scholar 

  3. Chen, Q. et al.: Low latency broadcast scheduling for battery-free wireless networks without predetermined structures. In: Proceedings of ICDCS, Singapore, 29 November -1 December (2020)

    Google Scholar 

  4. Chen, K., et al.: Distributed energy-adaptive aggregation scheduling with coverage guarantee for battery-free wireless sensor networks. In: Proc. INFOCOM, Paris, France (2019)

    Google Scholar 

  5. Cai, Z., et al.: Latency-and-coverage aware data aggregation scheduling for multihop battery-free wireless networks. IEEE Trans. Wireless Commun. 20(3), 1770–1784 (2021)

    Article  Google Scholar 

  6. Chen, Q., et al.: Energy-collision aware minimum latency aggregation scheduling for energy-harvesting sensor networks. ACM Trans. Sensor Netw. 17(4), 1–34 (2021)

    Article  Google Scholar 

  7. Zhang, J., et al.: Task-oriented energy scheduling in wireless rechargeable sensor networks. ACM Trans. Sensor Netw. 19(4), 1–32 (2023)

    Google Scholar 

  8. Li, J., Guo, S., Liang, W., et al.: AoI-Aware, digital twin-empowered iot query services in mobile edge computing. IEEE/ACM Trans. Netw. (2024)

    Google Scholar 

  9. Chen, Q., Guo, S., Cai, Z., et al.: Peak AoI minimization at wireless-powered network edge: from the perspective of both charging and transmitting. IEEE/ACM Trans. Netw. (2023)

    Google Scholar 

  10. Kaul, S., Yates, R., Gruteser, M.: Real-time status: How often should one update?. In: Proceedings of IEEE INFOCOM, pp. 2731-2735 (2012)

    Google Scholar 

  11. Yates, R., Kaul, S.: Real-time status updating: Multiple sources. In: Proc. IEEE ISIT, pp. 2666-2670 (2012)

    Google Scholar 

  12. Costa, M., Codreanu, M., Ephremides, A.: Age of information with packet management. In: Proceedings of IEEE ISIT, pp. 1583-1587 (2014)

    Google Scholar 

  13. Kaul, S., Yates, R., Gruteser, M.: Status updates through queues. In: Proceedings of CISS, pp. 1-6 (2012)

    Google Scholar 

  14. Kadota, I., et al.: Scheduling policies for minimizing age of information in broadcast wireless networks. IEEE Trans. Netw. 26(6), 2637–2650 (2018)

    Article  Google Scholar 

  15. Kadota, I., Sinha, A., Modiano, E.: Optimizing age of information in wireless networks with throughput constraints. In: Proceedings of IEEE INFOCOM, pp. 1844-1852 (2018)

    Google Scholar 

  16. Kadota, I., Sinha, A., Modiano, E.: Scheduling algorithms for optimizing age of information in wireless networks with throughput constraints. IEEE/ACM Trans. Netw. 27(4), 1359–1372 (2019)

    Article  Google Scholar 

  17. Farazi, S., Klein, A., Brown D.: Average age of information for status update systems with an energy harvesting server. In: Proc. IEEE INFOCOM WKSHPS, pp. 112-117 (2018)

    Google Scholar 

  18. Chen, Q., Cai, Z., Cheng, L., et al.: Joint near-optimal age-based data transmission and energy replenishment scheduling at wireless-powered network edge. In: Proc, IEEE INFOCOM, pp. 770-779 (2022)

    Google Scholar 

  19. Chen, Q., et al.: Peak AoI minimization with directional charging for data collection at wireless-powered network edge. IEEE Trans. Services Comput. (2023)

    Google Scholar 

  20. Chen, Q., Guo, S., Xu, W., et al.: Optimizing average AoI with directional charging for wireless-powered network edge. In: IEEE/ACM 31st International Symposium on Quality of Service (IWQoS), Orlando, FL, USA, pp. 1-10 (2023)

    Google Scholar 

  21. Li, C., et al.: Scheduling with age of information guarantee. IEEE/ACM Trans. Netw. 30(5), 2046–2059 (2022)

    Article  MathSciNet  Google Scholar 

  22. ) Li, C, et al.: On scheduling with AoI violation tolerance. In: Proceedings of IEEE INFOCOM, pp. 1-9 (2021)

    Google Scholar 

  23. Zou, Y, et al.: Minimizing age-of-information in heterogeneous multi-channel systems: a new partial-index approach. In: Proceedings of MOBIHOC, pp. 11-20 (2021)

    Google Scholar 

  24. Moltafet, M., Markus, L., Marian, C.: Worst case age of information in wireless sensor networks: a multi-access channel. IEEE Wireless Commun. Lett. 9(3), 321–325 (2019)

    Article  Google Scholar 

  25. Lou, J., et al.: Age of information optimization in multi-channel based multi-hop wireless networks. IEEE Trans. Mob. Comput. 22(10), 5719–5732 (2022)

    Article  Google Scholar 

  26. Arafa, A., Sennur, U.: Age-minimal transmission in energy harvesting two-hop networks. In: Proceedings of BECOM, pp. 1-6 (2017)

    Google Scholar 

  27. Talak, R., Sertac K., Eytan M.: Optimizing information freshness in wireless networks under general interference constraints. In: Proceedings of MOBIHOC, pp. 61-70 (2018)

    Google Scholar 

  28. Chan, T., Pan, H., Liang, J.: Age of information with joint packet coding in industrial IoT. IEEE Wireless Commun. Lett. 10(11), 2499–2503 (2021)

    Article  Google Scholar 

  29. Selen, J., et al.: The age of information in gossip networks. In: Proceedings of ASMTA, pp. 364-379 (2013)

    Google Scholar 

  30. Hirosawa, N., et al.: Age-of-Information minimization in two-user multiple access channel with energy harvesting. In: Proceedings of CAMSAP, pp. 361-365 (2019)

    Google Scholar 

  31. Xie, M., Gong, J., Ma, X.: Age and energy tradeoff for short packet based two-hop decode-and-forward relaying networks. In: Proceedings of WCNC, pp. 1-6 (2021)

    Google Scholar 

  32. Bedewy, A., Sun, Y., Shroff, N.: The age of information in multihop networks. IEEE/ACM Trans. Netw. 27(3), 1248–1257 (2019)

    Article  Google Scholar 

  33. Talak, R., Karaman, S., Modiano, E.: Minimizing age-ofinformation in multi-hop wireless networks. In: Proceedings of Allerton, pp. 486-493 (2017)

    Google Scholar 

  34. Zou, Y., et al.: Minimizing age-of-information in heterogeneous multi-channel systems: A new partial-index approach. In: Proceedings of MOBIHOC, pp. 11-20 (2021)

    Google Scholar 

Download references

Acknowledgment

This work is supported by NSFC under Grant No. 62372118, the Guangdong Basic and Applied Basic Research Foundation under Grant No. 2022A1515011032 and 2024A1515030136, the Guangzhou Science and Technology Plan under Grant 2023A04J1701, and the Guangdong Provincial Key Laboratory of Cyber-Physical System under Grant 2020B1212060069.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan Chen or Fanlong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, Q., Li, Y., Chai, Y., Chen, Q., Zhang, F., Tao, Y. (2024). Maintaining Data Freshness in Multi-channel Multi-hop Wireless Networks. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14964. Springer, Singapore. https://doi.org/10.1007/978-981-97-7241-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7241-4_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7240-7

  • Online ISBN: 978-981-97-7241-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics