Reentrancy Vulnerability Detection Based on Improved Attention Mechanism | SpringerLink
Skip to main content

Reentrancy Vulnerability Detection Based on Improved Attention Mechanism

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14886))

  • 484 Accesses

Abstract

With smart contracts rapidly proliferating, the efficiency of existing detection methods is inadequate. Detecting loopholes in contracts is a critical concern, and in this article, we present a fragmented, symbolic representation of smart contracts aimed to capture vital vulnerability semantic information and control flow correlation. Furthermore, for in-depth analysis of vulnerabilities in extensive code fragments, we refine the conventional attention mechanism to balance attention weights based on code semantics and context-specific features. We also integrate the text classification model TextRNN with the improved attention mechanism (LinkAttention) to precisely identify reentrancy vulnerabilities. Our experimental studies conducted on diverse real-world smart contracts suggest that our method outperforms existing vulnerability detection tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 26311
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Qiu, M., Guo, M., et al.: Loop scheduling and bank type assignment for heterogeneous multi-bank memory. JPDC 69(6), 546–558 (2009)

    Google Scholar 

  2. Huang, H., Chaturvedi, V., et al.: Throughput maximization for periodic real-time systems under the maximal temperature constraint. ACM TECS 13(2s), 1–22 (2014)

    Article  Google Scholar 

  3. Qiu, M., Dai, W., Vasilakos, A.: Loop parallelism maximization for multimedia data processing in mobile vehicular clouds. IEEE Trans. Cloud Comput. 7(1), 250–258 (2016)

    Article  Google Scholar 

  4. Zhang, Y., Qiu, M., et al.: Health-CPS: healthcare cyber-physical system assisted by cloud and big data. IEEE Syst. J. 11(1), 88–95 (2015)

    Article  Google Scholar 

  5. Song, Y., Li, Y., et al.: Retraining strategy-based domain adaption network for intelligent fault diagnosis. IEEE TII 16(9), 6163–6171 (2019)

    Google Scholar 

  6. Qiu, M., Zhang, K., Huang, M.: Usability in mobile interface browsing. Web Intell. Agent Syst. Int. J. 4(1), 43–59 (2006)

    Google Scholar 

  7. Zeng, Y., Pan, M., et al.: Narcissus: a practical clean-label backdoor attack with limited information. In: ACM CCS (2023)

    Google Scholar 

  8. Li, C., Qiu, M.: Reinforcement Learning for Cyber-Physical Systems: With Cybersecurity Case Studies. CRC Press, Boca Raton (2019)

    Google Scholar 

  9. Gai, K., Wu, Y., et al.: Privacy-preserving energy trading using consortium blockchain in smart grid. IEEE TII 15(6), 3548–3558 (2019)

    Google Scholar 

  10. Tang, Y., Yu, J., et al.: Context-I2W: mapping images to context-dependent words for accurate zero-shot composed image retrieval. In: AAAI, vol. 38, no. 6, pp. 5180–5188 (2024)

    Google Scholar 

  11. Gai, K., Guo, J., Zhu, L., Yu, S.: Blockchain meets cloud computing: a survey. IEEE Commun. Surv. Tutor. 22(3), 2009–2030 (2020)

    Article  Google Scholar 

  12. Gai, K., Zhang, Y., et al.: Blockchain-enabled service optimizations in supply chain digital twin. IEEE Trans. Serv. Comput. 16(3), 1673–1685 (2022)

    Google Scholar 

  13. Zhang, Y., Gai, K., et al.: Blockchain-empowered efficient data sharing in internet of things settings. IEEE J. Sel. Areas Commun. 40(12), 3422–3436 (2022)

    Article  Google Scholar 

  14. Miao, Y., Gai, K., et al.: Blockchain-based shared data integrity auditing and deduplication. IEEE Trans. Dependable Secure Comput. (2023)

    Google Scholar 

  15. Wang, S., Ouyang, L., Yuan, Y., et al.: Blockchain-enabled smart contracts: architecture, applications, and future trends. IEEE Trans. Syst. Man Cybern. Syst. 49(11), 2266–2277 (2019)

    Article  Google Scholar 

  16. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  17. Durieux, T., Ferreira, J.F., Abreu, R., et al.: Empirical review of automated analysis tools on 47,587 ethereum smart contracts. In: ACM/IEEE 42nd Conference on Software Engineering, pp. 530–541 (2020)

    Google Scholar 

  18. Qian, P., Liu, Z., He, Q., et al.: Towards automated reentrancy detection for smart contracts based on sequential models. IEEE Access 8, 19685–19695 (2020)

    Article  Google Scholar 

  19. Luu, L., Chu, D.H., Olickel, H., et al.: Making smart contracts smarter. In: ACM SIGSAC Conference on Computer and Communications Security, pp. 254–269 (2016)

    Google Scholar 

  20. Tsankov, P., Dan, A., Drachsler-Cohen, D., et al.: Securify: practical security analysis of smart contracts. In: ACM SIGSAC Conference on Computer and Communications Security, pp. 67–82 (2018)

    Google Scholar 

  21. Jiang, B., Liu, Y., Chan, W.K.: Contractfuzzer: fuzzing smart contracts for vulnerability detection. In: ACM/IEEE International Conference on Automated Software Engineering, pp. 259–269 (2018)

    Google Scholar 

  22. Liu, C., Liu, H., Cao, Z., et al.: ReGuard: finding reentrancy bugs in smart contracts. In: Proceedings of the IEEE/ACM International Conference on Software Engineering: Companion (2018)

    Google Scholar 

  23. Liu, C., Liu, H., Cao, Z., et al.: Reguard: finding reentrancy bugs in smart contracts. In: International Conference on Software Engineering: Companion Proceedings, pp. 65–68 (2018)

    Google Scholar 

  24. Wang, W., Song, J., Xu, G., et al.: Contractward: automated vulnerability detection models for ethereum smart contracts. IEEE Trans. Netw. Sci. Eng. 8(2), 1133–1144 (2020)

    Article  Google Scholar 

  25. Zhuang, Y., Liu, Z., Qian, P., et al.: Smart contract vulnerability detection using graph neural networks. In: 29th International Joint Conference on Artificial Intelligence, pp. 3283–3290 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, H., Qiu, M., Zhao, H. (2024). Reentrancy Vulnerability Detection Based on Improved Attention Mechanism. In: Cao, C., Chen, H., Zhao, L., Arshad, J., Asyhari, T., Wang, Y. (eds) Knowledge Science, Engineering and Management. KSEM 2024. Lecture Notes in Computer Science(), vol 14886. Springer, Singapore. https://doi.org/10.1007/978-981-97-5498-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5498-4_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5497-7

  • Online ISBN: 978-981-97-5498-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics