Exploring Language Diversity to Improve Neural Text Generation | SpringerLink
Skip to main content

Exploring Language Diversity to Improve Neural Text Generation

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14888))

  • 258 Accesses

Abstract

Text Generation aims to utilize contextual details to generate linguistically appropriate language. Research has demonstrated that integrating various linguistic features can significantly enhance the quality of text generation tasks. In light of this, this paper proposes an innovative approach Diversity Text Generation (DiversityGen)-and makes advancements in three aspects. Firstly, data augmentation techniques are employed to transform the original data, thereby enhancing the latent features of the text. Secondly, in the conversion of the model’s distributed vector output into text, a combination of Top-K and Beam Search decoding methods (Top-k-bs-m) is utilized. This extends the search space through random sampling during Beam Search decoding, thereby improving decoding performance and generating diversified text. Lastly, the concept of Over Generation (OGen) is introduced, wherein the results are filtered using three probability maximization-based methods to optimize output diversity. Experimental results demonstrate the effectiveness of this approach in question generation and text summarization tasks, surpassing current benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wenhao, Yu., et al.: A survey of knowledge-enhanced text generation. ACM Comput. Surv. 54(11s), 1–38 (2022)

    Article  Google Scholar 

  2. Shao, Z., Huang, M., Wen, J., Xu, W., Zhu, X.: Long and diverse text generation with planning-based hierarchical variational model. arXiv preprint arXiv:1908.06605 (2019)

  3. Heilman, M.: Automatic factual question generation from text. Ph.D. thesis, Carnegie Mellon University (2011)

    Google Scholar 

  4. El-Kassas, W.S., Salama, C.R., Rafea, A.A., Mohamed, H.K.: Automatic text summarization: a comprehensive survey. Expert Syst. Appl. 165, 113679 (2021)

    Google Scholar 

  5. Qin, Y., Wang, Z., Xi, D.: Tree cycleGAN with maximum diversity loss for image augmentation and its application into gear pitting detection. Appl. Soft Comput. 114, 108130 (2022)

    Article  Google Scholar 

  6. Lu, X., et al.: Neurologic a* esque decoding: Constrained text generation with lookahead heuristics. arXiv preprint arXiv:2112.08726 (2021)

  7. Chen, M., et al.: Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374 (2021)

  8. Chen, J., Tam, D., Raffel, C., Bansal, M., Yang, D.: An empirical survey of data augmentation for limited data learning in NLP. Trans. Assoc. Comput. Linguist. 11, 191–211 (2023)

    Article  Google Scholar 

  9. Caccia, M., Caccia, L., Fedus, W., Larochelle, H., Pineau, J., Charlin, L.: Language GANs falling short. arXiv preprint arXiv:1811.02549 (2018)

  10. Lachaux, M.-A., Joulin, A., Lample, G.: Target conditioning for one-to-many generation. arXiv preprint arXiv:2009.09758 (2020)

  11. Shu, L., et al.: Controllable text generation with focused variation. arXiv preprint arXiv:2009.12046 (2020)

  12. Cao, Y., Wan, X.: Divgan: Towards diverse paraphrase generation via diversified generative adversarial network. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 2411–2421 (2020)

    Google Scholar 

  13. Zhang, Z., Zhu, K.: Diverse and specific clarification question generation with keywords. In: Proceedings of the Web Conference 2021, pp. 3501–3511 (2021)

    Google Scholar 

  14. Schlichtkrull, M.S., Cheng, W.: Evaluating for diversity in question generation over text. arXiv preprint arXiv:2008.07291 (2020)

  15. Lee, D.B., Lee, S., Jeong, W.T., Kim, D., Hwang, S.J.: Generating diverse and consistent QA pairs from contexts with information-maximizing hierarchical conditional VAEs. arXiv preprint arXiv:2005.13837 (2020)

  16. Jovanovic, M., Campbell, M.: Generative artificial intelligence: trends and prospects. Computer 55(10), 107–112 (2022)

    Article  Google Scholar 

  17. Freitag, M., Al-Onaizan, Y.: Beam search strategies for neural machine translation. arXiv preprint arXiv:1702.01806 (2017)

  18. Gao, Y., Zhang, Z., Hong, R., Zhang, H., Fan, J., Yan, S.: Towards feature distribution alignment and diversity enhancement for data-free quantization. In: 2022 IEEE International Conference on Data Mining (ICDM), pp. 141–150. IEEE (2022)

    Google Scholar 

  19. Harkous, H., Groves, I., Saffari, A.: Have your text and use it too! end-to-end neural data-to-text generation with semantic fidelity. arXiv preprint arXiv:2004.06577 (2020)

  20. Radford, A., Jeffrey, W., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

    Google Scholar 

  21. Holtzman, A., Buys, J., Du, L., Forbes, M., Choi, Y.: The curious case of neural text degeneration. arXiv preprint arXiv:1904.09751 (2019)

  22. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)

    Google Scholar 

  23. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461 (2019)

  24. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

  25. Zheng, L., Guha, N., Anderson, B.R., Henderson, P., Ho, D.E.: When does pretraining help? Assessing self-supervised learning for law and the casehold dataset of 53,000+ legal holdings. In: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law, pp. 159–168 (2021)

    Google Scholar 

  26. Manor, L., Li, J.J.: Plain English summarization of contracts. In: roceedings of the Natural Legal Language Processing Workshop 2019, Minneapolis, Minnesota, June 2019, pp. 1–11. Association for Computational Linguistics (2019)

    Google Scholar 

  27. Qi, W., et al.: Prophetnet: predicting future n-gram for sequence-to-sequence pre-training. arXiv preprint arXiv:2001.04063 (2020)

  28. Wu, Z., Jia, X., Qu, F., W, Y.: . Enhancing pre-trained models with text structure knowledge for question generation. arXiv preprint arXiv:2209.04179 (2022)

  29. Back, S., Kedia, A., Chinthakindi, S.C., Lee, H., Choo, J.: Learning to generate questions by recovering answer-containing sentences (2020)

    Google Scholar 

  30. Chan, Y.-H., Fan, Y.-C.: A recurrent BERT-based model for question generation. In: Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pp. 154–162 (2019)

    Google Scholar 

Download references

Acknowledgments

This research is supported by Sichuan Science and Technology Program (no. 2024NSFSC0520) and Humanities and Social Science Fund of Ministry of Education (no. 23YJA740013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, L., Chen, X., Wang, B., Jin, P. (2024). Exploring Language Diversity to Improve Neural Text Generation. In: Cao, C., Chen, H., Zhao, L., Arshad, J., Asyhari, T., Wang, Y. (eds) Knowledge Science, Engineering and Management. KSEM 2024. Lecture Notes in Computer Science(), vol 14888. Springer, Singapore. https://doi.org/10.1007/978-981-97-5489-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5489-2_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5488-5

  • Online ISBN: 978-981-97-5489-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics