Combined Particle Filter and Its Application on Human Pose Estimation | SpringerLink
Skip to main content

Combined Particle Filter and Its Application on Human Pose Estimation

  • Conference paper
  • First Online:
Digital Multimedia Communications (IFTC 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2066))

  • 228 Accesses

Abstract

Time series analysis has a wide range of applications in various domains. When addressing this task, tracking and identification are usually solved as two separate problems. However, it introduces a lot of computational redundancy and makes it difficult to guarantee synchronization and real-time performance. We propose a joint problem combining recognition and tracking and use particle filtering to solve the state estimation problem. However, the general particle filter cannot accurately estimate the state of the system in the time series state estimation task, because the system is time-varying and the prediction model of the particle filter is fixed. To address this issue, we assume that the system transition space is a set of finite prediction modes, and then propose a new Combined Particle Filter (CPF) framework that jointly achieves prediction mode recognition and state tracking. In the CPF, the prediction mode is regarded as a variable to be estimated, along with the system state variables. As a result, the resampled particle state set forms the global estimation of the system state, while the resampled mode variables indicate the optimal transition mode of the current frame. We construct an evaluation index system and conduct several evaluation tests to demonstrate the excellent performance of the CPF. Finally, we apply the CPF to the articulated human pose estimation task and obtain satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Decarlo, D., Metaxas, D.: Optical flow constraints on deformable models with applications to face tracking. Int. J. Comput. Vision 38(2), 99–127 (2000)

    Article  Google Scholar 

  2. Arroyo-Marioli, F., Bullano, F., Kucinskas, S., et al.: Tracking R of COVID-19: a new real-time estimation using the Kalman filter. PLoS ONE 16(1), e0244474 (2021)

    Article  Google Scholar 

  3. Deng, X., Mousavian, A., Xiang, Y., et al.: PoseRBPF: a rao-blackwellized particle filter for 6-D object pose tracking. IEEE Trans. Rob. 37(5), 1328–1342 (2021)

    Article  Google Scholar 

  4. Zhao, M., Jha, A., Liu, Q., et al.: Faster mean-shift: GPU-accelerated clustering for cosine embedding-based cell segmentation and tracking. Med. Image Anal. 71, 102048 (2021)

    Article  Google Scholar 

  5. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4293–4302 (2016)

    Google Scholar 

  6. Dong, X., Shen, J.: Triplet loss in siamese network for object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 459–474 (2018)

    Google Scholar 

  7. Milan, A., Rezatofighi, S.H., Dick, A., et al.: Online multi-target tracking using recurrent neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1 (2017)

    Google Scholar 

  8. Song, Y., Ma, C., Wu, X., et al.: Vital: visual tracking via adversarial learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8990–8999 (2018)

    Google Scholar 

  9. Li, T., Sun, S., Sattar, T.P., et al.: Fight sample degeneracy and impoverishment in particle filters: a review of intelligent approaches. Expert Syst. Appl. 41(8), 3944–3954 (2014)

    Article  Google Scholar 

  10. Arulampalam, M.S., Maskell, S., Gordon, N., et al.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  11. Haque, M.S., Choi, S., Baek, J.: Auxiliary particle filtering-based estimation of remaining useful life of IGBT. IEEE Trans. Industr. Electron. 65(3), 2693–2703 (2017)

    Article  Google Scholar 

  12. Van Der Merwe, R., Doucet, A., De Freitas, N., et al.: The unscented particle filter. In: Advances in Neural Information Processing Systems, vol. 13 (2000)

    Google Scholar 

  13. Oudjane, N., Musso, C.: Progressive correction for regularized particle filters. In: Proceedings of the Third International Conference on Information Fusion, vol. 2, pp. THB2/10–THB2/17. IEEE (2000)

    Google Scholar 

  14. Liu, J., Wang, W., Ma, F.: A regularized auxiliary particle filtering approach for system state estimation and battery life prediction. Smart Mater. Struct. 20(7), 075021 (2011)

    Article  Google Scholar 

  15. Murangira, A., Musso, C., Dahia, K.: A mixture regularized rao-blackwellized particle filter for terrain positioning. IEEE Trans. Aerosp. Electron. Syst. 52(4), 1967–1985 (2016)

    Article  Google Scholar 

  16. Chu, C.Y., Chao, C.H., Chao, M.A., et al.: Multi-prediction particle filter for efficient memory utilization. In: 2010 IEEE Workshop on Signal Processing Systems, pp. 295–298. IEEE (2010)

    Google Scholar 

  17. Fang, H., Fan, H., Ma, H., et al.: Lithium-ion batteries life prediction method basedon degenerative characters and improved particle filter. In: 2015 IEEE Conference on Prognostics and Health Management (PHM), pp. 1–10. IEEE (2015)

    Google Scholar 

  18. Rabiner, L., Juang, B.: An introduction to hidden Markov models. IEEE ASSP Mag. 3(1), 4–16 (1986)

    Article  Google Scholar 

  19. Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755–763 (1998)

    Article  Google Scholar 

  20. Jouin, M., Gouriveau, R., Hissel, D., et al.: Particle filter-based prognostics: review, discussion and perspectives. Mech. Syst. Signal Process. 72, 2–31 (2016)

    Article  Google Scholar 

  21. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    Article  Google Scholar 

  22. Seila, A.F.: Simulation and the Monte Carlo method. Technometrics 24(2), 167–168 (2007)

    Article  Google Scholar 

  23. Jouin, M., Gouriveau, R., Hissel, D., Péra, M.-C., Zerhouni, N.: Particle filter-based prognostics: review, discussion and perspectives. Mech. Syst. Signal Process. 72, 2–31 (2016)

    Article  Google Scholar 

  24. Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley, Hoboken (2006)

    Book  Google Scholar 

  25. Balakrishnan, V.: All about the dirac delta function (?). Resonance 8(8), 48–58 (2003)

    Article  Google Scholar 

  26. Park, S., Hwang, J.P., Kim, E., Kang, H.-J.: A new evolutionary particle filter for the prevention of sample impoverishment. IEEE Trans. Evol. Comput. 13(4), 801–809 (2009)

    Article  Google Scholar 

  27. Li, T., Sattar, T.P., Sun, S.: Deterministic resampling: unbiased sampling to avoid sample impoverishment in particle filters. Signal Process. 92(7), 1637–1645 (2012)

    Article  Google Scholar 

  28. Sandhya, E., Prasanth, C.: Marshall-olkin discrete uniform distribution. J. Probab. 2014 (2014)

    Google Scholar 

  29. Comaniciu, D., Meer, P.: Mean shift analysis and applications. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1197–1203. IEEE (1999)

    Google Scholar 

  30. Wu, Q., Yan, Y., Liang, Y., Liu, Y., Wang, H.: DSNet: deep and shallow feature learning for efficient visual tracking. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 119–134. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_8

    Chapter  Google Scholar 

  31. Chen, Z., Zhong, B., Li, G., et al.: Siamese box adaptive network for visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6668–6677 (2020)

    Google Scholar 

  32. Yang, T., Chan, A.B.: Recurrent filter learning for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2010–2019 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Ye, L., Yang, Y. (2024). Combined Particle Filter and Its Application on Human Pose Estimation. In: Zhai, G., Zhou, J., Ye, L., Yang, H., An, P., Yang, X. (eds) Digital Multimedia Communications. IFTC 2023. Communications in Computer and Information Science, vol 2066. Springer, Singapore. https://doi.org/10.1007/978-981-97-3623-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-3623-2_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-3622-5

  • Online ISBN: 978-981-97-3623-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics