MCNet: A Multi-scale and Cascade Network for Semantic Segmentation of Remote Sensing Images | SpringerLink
Skip to main content

MCNet: A Multi-scale and Cascade Network for Semantic Segmentation of Remote Sensing Images

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

High resolution remote sensing images that can show more detailed ground information play an important role in land classification. However, existing segmentation methods have the problems of insufficient use of multi-scale feature and semantic information. In this study, a multi-scale and cascade semantic segmentation network (MCNet) was proposed and tested on the Potsdam and Vaihingen datasets. (1) Multi-scale feature extraction module: using dilated convolution and a parallel structure to fully extract multi-scale feature information. (2) Cross-layer feature selection module: adaptively selecting features in different levels to avoid the loss of key features. (3) Multi-scale object guidance module: weighting the features at different scales to express the multi-scale ground objects. (4) Cascade structure in the decoder part: increasing the information flow and enhancing the decoding capability of the network. Results show that the proposed MCNet outperformed the baseline networks, achieving an average overall accuracy of 86.91% and 87.82% on the two datasets, respectively. In conclusion, the multi-scale and cascade semantic segmentation network can improve the accuracy of land cover classification by using remote sensing images.

Y. Zhou and T. Li—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 20591
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, M., Dong, Z., Cheng, Y., et al.: Optimal segmentation of high-resolution remote sensing image by combining superpixels with the minimum spanning tree. IEEE Trans. Geosci. Remote Sens. 56(1), 228–238 (2017)

    Article  Google Scholar 

  2. Chen, S., Sun, T., Yang, F., et al.: An improved optimum-path forest clustering algorithm for remote sensing image segmentation. Comput. Geosci. 112, 38–46 (2018)

    Article  Google Scholar 

  3. Wang, M., Wan, Y., Ye, Z., et al.: Remote sensing image classification based on the optimal support vector machine and modified binary coded ant colony optimization algorithm. Inf. Sci. 402, 50–68 (2017)

    Article  Google Scholar 

  4. Chen, G., Tan, X., Guo, B., et al.: SDFCNv2: An improved FCN framework for remote sensing images semantic segmentation. Remote Sens. 13(23), 4902 (2021)

    Article  Google Scholar 

  5. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. arXiv preprint arXiv:1605.06211 (2016)

  6. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. arXiv preprint arXiv:1505.04597 (2015)

  7. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  8. Chen, L.C., Papandreou, G., Kokkinos, I., et al.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)

  9. Chen, L.C., Papandreou, G., Kokkinos, I., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  10. Chen, L.C., Papandreou, G., Schroff, F., et al.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  12. Wang, X., Girshick, R., Gupta, A., et al.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  13. Li, S., Xue, L., Feng, L., et al.: Object detection network pruning with multi-task information fusion. World Wide Web 25(4), 1667–1683 (2022)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Zhou, Q., Yang, W., Gao, G., et al.: Multi-scale deep context convolutional neural networks for semantic segmentation. World Wide Web 22, 555–570 (2019)

    Article  Google Scholar 

  16. Zhou, Z., Zhou, Y., Wang, D., et al.: Self-attention feature fusion network for semantic segmentation. Neurocomputing 453, 50–59 (2021)

    Article  Google Scholar 

  17. Zhao, Q., Liu, J., Li, Y., et al.: Semantic segmentation with attention mechanism for remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2021)

    Article  Google Scholar 

  18. Li, F., Wang, X., Sun, Y., et al.: Transfer learning based cascaded deep learning network and mask recognition for COVID-19. World Wide Web, pp. 1–16 (2023)

    Google Scholar 

  19. Liu, R., Mi, L., Chen, Z.: AFNet: adaptive fusion network for remote sensing image semantic segmentation. IEEE Trans. Geosci. Remote Sens. 59(9), 7871–7886 (2020)

    Article  Google Scholar 

  20. Chen, X., Li, Z., Jiang, J., et al.: Adaptive effective receptive field convolution for semantic segmentation of VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 59(4), 3532–3546 (2020)

    Article  Google Scholar 

  21. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  22. Wang, P., Chen, P., Yuan, Y., et al.: Understanding convolution for semantic segmentation. arXiv preprint arXiv:1702.08502 (2017)

  23. Wang, Q., Wu, B., Zhu, P., et al.: ECA-net: efficient channel attention for deep convolutional neural networks. arXiv preprint arXiv:1910.03151 (2019)

  24. Xiang, S., Xie, Q., Wang, M.: Semantic segmentation for remote sensing images based on adaptive feature selection network. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (No. U21A2013 and 42071430), Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education (Grant Number: GLAB2020ZR14 and CUG2022ZR02) and College Students’ Independent Innovation Funding Program Launch Project (No. S202310491229 and S202310491175).

Computation of this work was performed by the High-performance GPU Server (TX321203) Computing Centre of the National Education Field Equipment Renewal and Renovation Loan Financial Subsidy Project of China University of Geosciences, Wuhan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianju Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Li, T., Li, X., Feng, R. (2024). MCNet: A Multi-scale and Cascade Network for Semantic Segmentation of Remote Sensing Images. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14332. Springer, Singapore. https://doi.org/10.1007/978-981-97-2390-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2390-4_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2389-8

  • Online ISBN: 978-981-97-2390-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics