Carbon-Awareness in CI/CD | SpringerLink
Skip to main content

Carbon-Awareness in CI/CD

  • Conference paper
  • First Online:
Service-Oriented Computing – ICSOC 2023 Workshops (ICSOC 2023)

Abstract

While the environmental impact of cloud computing is increasingly evident, the climate crisis has become a major issue for society. For instance, data centers alone account for 2.7% of Europe’s energy consumption today. A considerable part of this load is accounted for by cloud-based services for automated software development, such as continuous integration and delivery (CI/CD) workflows.

In this paper, we discuss opportunities and challenges for greening CI/CD services by better aligning their execution with the availability of low-carbon energy. We propose a system architecture for carbon-aware CI/CD services, which uses historical runtime information and, optionally, user-provided information. Our evaluation examines the potential effectiveness of different scheduling strategies using real carbon intensity data and 7,392 workflow executions of Github Actions, a popular CI/CD service. Results show, that user-provided information on workflow deadlines can effectively improve carbon-aware scheduling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7549
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.watttime.org.

  2. 2.

    alibaba/arthas, apache/dubbo, apache/flink, apache/spark, k3s-io/k3s, kubernetes/minikube, microsoft/typescript, microsoft/vscode, netdata/netdata, Tencent/ncnn.

References

  1. Masanet, E., Shehabi, A., Lei, N., Smith, S., Koomey, J.: Recalibrating global data center energy-use estimates. Science 367(6481), 984–986 (2020)

    Article  Google Scholar 

  2. Montevecchi, F., Stickler, T., Hintemann, R., Hinterholzer, S.: Energy-efficient Cloud Computing Technologies and Policies for an Eco-friendly Cloud Market. Final Study Report. Publications Office of the European Union, LU (2020)

    Google Scholar 

  3. Meyer, M.: Continuous integration and its tools. IEEE Softw. 31(3), 14–16 (2014)

    Article  Google Scholar 

  4. CD Foundation. State of Continuous Delivery Report: The Evolution of Software Delivery Performance (2022)

    Google Scholar 

  5. Ibrahim, M., et al.: An in-depth empirical investigation of state-of-the-art scheduling approaches for cloud computing. IEEE Access 8, 128282–128294 (2020)

    Article  Google Scholar 

  6. World Bank. State and trends of carbon pricing 2022. Technical report. World Bank, Washington, DC (2022)

    Google Scholar 

  7. Wiesner, P., Behnke, I., Scheinert, D., Gontarska, K., Thamsen, L.: Let’s wait awhile: how temporal workload shifting can reduce carbon emissions in the cloud. ACM Middleware (2021)

    Google Scholar 

  8. Radovanovic, A., et al.: Carbon-aware computing for datacenters. IEEE Trans. Power Syst. (2022)

    Google Scholar 

  9. Fridgen, G., Körner, M.-F., Walters, S., Weibelzahl, M.: Not all doom and gloom: how energy-intensive and temporally flexible data center applications may actually promote renewable energy sources. Bus. Inf. Syst. Eng. 63(3) (2021)

    Google Scholar 

  10. Zheng, J., Chien, A.A., Suh, S.: Mitigating curtailment and carbon emissions through load migration between data centers. Joule 4(10) (2020)

    Google Scholar 

  11. Zhou, Z., et al.: Carbon-aware load balancing for geo-distributed cloud services. In: International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS) (2013)

    Google Scholar 

  12. Moghaddam, F., Farrahi Moghaddam, R., Cheriet, M.: Carbon-aware distributed cloud: multi-level grouping genetic algorithm. Cluster Comput. 18, 477–491 (2015)

    Article  Google Scholar 

  13. Hanafy, W.A., Liang, Q., Bashir, N., Irwin, D., Shenoy, P.: CarbonScaler: leveraging cloud workload elasticity for optimizing carbon-efficiency. In: ACM SIGMETRICS/IFIP Performance (2024)

    Google Scholar 

  14. Lin, L., Zavala, V.M., Chien, A.: Evaluating coupling models for cloud datacenters and power grids. ACM e-Energy (2021)

    Google Scholar 

  15. Goiri, I., et al.: Matching renewable energy supply and demand in green datacenters. Ad Hoc Netw. 25, 520–534 (2015)

    Article  Google Scholar 

  16. Wiesner, P., Scheinert, D., Wittkopp, T., Thamsen, L., Kao, O.: Cucumber: renewable-aware admission control for delay-tolerant cloud and edge workloads. In: Cano, J., Trinder, P. (eds.) Euro-Par 2022. LNCS, vol. 13440, pp. 218–232. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-12597-3_14

    Chapter  Google Scholar 

  17. Abdalkareem, R., Mujahid, S., Shihab, E., Rilling, J.: Which commits can be CI skipped? IEEE Trans. Softw. Eng. 47(3), 448–463 (2021)

    Article  Google Scholar 

  18. Ficher, M., Berthoud, F., Ligozat, A.-L., Sigonneau, P., Wisslé, M., Tebbani, B.: Assessing the carbon footprint of the data transmission on a backbone network. In: Conference on Innovation in Clouds, Internet and Networks (ICIN) (2021)

    Google Scholar 

  19. Cirne, W., Berman, F.: A comprehensive model of the supercomputer workload. In: 4th IEEE International Workshop on Workload Characterization (2001)

    Google Scholar 

  20. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated predictions rather than user runtime estimates. IEEE Trans. Parallel Distrib. Syst. 18(6), 789–803 (2007)

    Article  Google Scholar 

  21. Tang, W., Lan, Z., Desai, N., Buettner, D.: Fault-aware, utility-based job scheduling on Blue, Gene/P systems. In: IEEE CLUSTER (2009)

    Google Scholar 

  22. Ward, W.A., Mahood, C.L., West, J.E.: Scheduling jobs on parallel systems using a relaxed backfill strategy. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 88–102. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36180-4_6

    Chapter  Google Scholar 

  23. Wiesner, P., Behnke, I., Kao, O.: A testbed for carbon-aware applications and systems. arXiv:2306.09774 [cs.DC] (2023)

Download references

Acknowledgments

We sincerely thank WattTime for providing us with access to their marginal carbon intensity data. This research was supported by the German Ministry for Education and Research (BMBF) as Software Campus (grant 01IS17050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Wiesner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Claßen, H., Thierfeldt, J., Tochman-Szewc, J., Wiesner, P., Kao, O. (2024). Carbon-Awareness in CI/CD. In: Monti, F., et al. Service-Oriented Computing – ICSOC 2023 Workshops. ICSOC 2023. Lecture Notes in Computer Science, vol 14518. Springer, Singapore. https://doi.org/10.1007/978-981-97-0989-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0989-2_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0988-5

  • Online ISBN: 978-981-97-0989-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics