Leveraging GNNs and Node Entropy for Anomaly Detection: Revealing Misinformation Spreader on Twitter Network | SpringerLink
Skip to main content

Leveraging GNNs and Node Entropy for Anomaly Detection: Revealing Misinformation Spreader on Twitter Network

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14479))

Included in the following conference series:

Abstract

The rapid growth of social media, misinformation propagation has become a critical challenge, especially on platforms like Facebook and Twitter. Detecting misinformation spreaders is vital to mitigate its harmful impact on users and society. This paper proposes an innovative approach to identify potential anomalous nodes of misinformation spreaders on Twitter networks by employing Graph Neural Networks (GNNs) and entropy-based method. Utilizing GNNs, we learn node embeddings that capture the intricate patterns of information diffusion and user attributes. Additionally, we analyze the entropy of node attributes on the embeddings to identify nodes exhibiting attribute distributions significantly deviating from the normal. Those anomalous nodes exhibit in the class of misinformation spreader will lead to detect potential of aggressive node in spreading further misinformation.

Through extensive experiments conducted on real-world Twitter datasets containing misinformation-related content, our novel approach showcases its efficacy in identifying potential anomalous nodes as misinformation spreaders across various categories. By harnessing the capabilities of Graph Neural Networks (GNNs) and integrating them with entropy-based techniques via node embeddings, our methodology offers a promising avenue for gaining deeper insights into the behavior of distinct misinformation spreaders and their potential influence on others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Disc. 29, 626–688 (2015)

    Article  MathSciNet  Google Scholar 

  2. Guo, C., Yang, L., Chen, X., Chen, D., Gao, H., Ma, J.: Influential nodes identification in complex networks via information entropy. Entropy 22(2), 242 (2020)

    Article  MathSciNet  Google Scholar 

  3. Hamilton, W.L., et al.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  4. Langguth, J., Filkuková, P., Brenner, S., Schroeder, D.T., Pogorelov, K.: Covid-19 and 5g conspiracy theories: long term observation of a digital wildfire. Int. J. Data Sci. Anal. 15(3), 329–346 (2023)

    Article  Google Scholar 

  5. Langguth, J., Schroeder, D.T., Filkuková, P., Brenner, S., Phillips, J., Pogorelov, K.: Coco: an annotated twitter dataset of covid-19 conspiracy theories. J. Comput. Social Sci. 1–42 (2023)

    Google Scholar 

  6. Lei, M., Cheong, K.H.: Node influence ranking in complex networks: a local structure entropy approach. Chaos, Solitons Fractals 160, 112136 (2022)

    Article  MathSciNet  Google Scholar 

  7. Maulana, A., Atzmueller, M.: Centrality-based anomaly detection on multi-layer networks using many-objective optimization. In: 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), vol. 1, pp. 633–638, IEEE (2020)

    Google Scholar 

  8. Maulana, A., Atzmueller, M.: Many-objective optimization for anomaly detection on multi-layer complex interaction networks. Appl. Sci. 11(9), 4005 (2021)

    Article  Google Scholar 

  9. Maulana, A., Kefalas, M., Emmerich, M.T.: Immunization of networks using genetic algorithms and multiobjective metaheuristics. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8, IEEE (2017)

    Google Scholar 

  10. Pogorelov, K., Schroeder, D.T., Brenner, S., Langguth, J.: Fakenews: corona virus and conspiracies multimedia analysis task at mediaeval 2021. In: Multimedia Benchmark Workshop, vol. 67 (2021)

    Google Scholar 

  11. Pogorelov, K., Schroeder, D.T., Brenner, S., Maulana, A., Langguth, J.: Combining tweets and connections graph for fakenews detection at mediaeval 2022. In: Multimedia Benchmark Workshop (2022)

    Google Scholar 

  12. Pogorelov, K., Schroeder, D.T., Filkuková, P., Brenner, S., Langguth, J.: Wico text: a labeled dataset of conspiracy theory and 5g-corona misinformation tweets. In: Proceedings of the 2021 Workshop on Open Challenges in Online Social Networks, pp. 21–25 (2021)

    Google Scholar 

  13. Qiao, T., Shan, W., Zhou, C.: How to identify the most powerful node in complex networks? a novel entropy centrality approach. Entropy 19(11), 614 (2017)

    Article  Google Scholar 

  14. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  15. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Techn. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  16. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. ACM SIGKDD Explor. Newsl. 19(1), 22–36 (2017)

    Article  Google Scholar 

  17. Velickovic, P., et al.: Graph convolutional networks: a comprehensive review. IEEE Trans. Neural Netw. Learn. Syst. 34(11), 2414–2440 (2023)

    Google Scholar 

  18. Wohn, D.Y., Min, S.J., Hoewe, J., Bowe, B.J.: The impact of online network diversity on familiarity and engagement with social issues news on facebook. J. Social Media Soc. 12(1), 286–308 (2023)

    Google Scholar 

  19. Yu, Y., Zhou, B., Chen, L., Gao, T., Liu, J.: Identifying important nodes in complex networks based on node propagation entropy. Entropy 24(2), 275 (2022)

    Article  MathSciNet  Google Scholar 

  20. Zareie, A., Sheikhahmadi, A., Fatemi, A.: Influential nodes ranking in complex networks: an entropy-based approach. Chaos, Solitons Fractals 104, 485–494 (2017)

    Article  Google Scholar 

  21. Zhang, Q., Li, M., Deng, Y.: Measure the structure similarity of nodes in complex networks based on relative entropy. Phys. A Stat. Mech. Appl. 491, 749–763 (2018)

    Article  MathSciNet  Google Scholar 

  22. Zhang, X., Ghorbani, A.A.: An overview of online fake news: characterization, detection, and discussion. Inf. Process. Manag. 57, 102025 (2020)

    Article  Google Scholar 

  23. Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

This work is part of the Enabling Graph Neural Networks at Exascale (EGNE) Project and was funded by the Norwegian Research Council under contracts 303404 and has benefited from the Experimental Infrastructure for Exploration of Exascale Computing(eX3), which is financially supported by the Research Council of Norway under contract 270053

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asep Maulana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maulana, A., Langguth, J. (2024). Leveraging GNNs and Node Entropy for Anomaly Detection: Revealing Misinformation Spreader on Twitter Network. In: Hà, M.H., Zhu, X., Thai, M.T. (eds) Computational Data and Social Networks. CSoNet 2023. Lecture Notes in Computer Science, vol 14479. Springer, Singapore. https://doi.org/10.1007/978-981-97-0669-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0669-3_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0668-6

  • Online ISBN: 978-981-97-0669-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics