Abstract
We propose an approach called bounded combinatorial reconfiguration for solving combinatorial reconfiguration problems based on Answer Set Programming (ASP). The general task is to study the solution spaces of combinatorial problems and to decide whether or not there are sequences of feasible solutions that have special properties. The resulting recongo solver covers all metrics of the solver track in the most recent international competition on combinatorial reconfiguration (CoRe Challenge 2022). recongo ranked first in the shortest metric of the single-engine solvers track. In this paper, we present the design and algorithm of bounded combinatorial reconfiguration, and also present ASP encodings of the independent set reconfiguration problem under the token jumping rule that is one of the most studied combinatorial reconfiguration problems. Finally, we present empirical analysis considering all instances of CoRe Challenge 2022.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An overview of recongo is given in a short paper [28]. The present paper gives more detailed algorithms, encodings, and empirical analysis of bounded combinatorial reconfiguration.
- 2.
- 3.
References
Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)
Biere, A.: Bounded model checking. In: Handbook of Satisfiability, pp. 457–481. IOS Press (2009)
Bonsma, P.S., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theoret. Comput. Sci. 410(50), 5215–5226 (2009)
Brewster, R.C., McGuinness, S., Moore, B.R., Noel, J.A.: A dichotomy theorem for circular colouring reconfiguration. Theoret. Comput. Sci. 639, 1–13 (2016)
Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. Graph Theory 67(1), 69–82 (2011)
Christen, R., et al.: PARIS: planning algorithms for reconfiguring independent sets. In: Gal, K., Nowé, A., Nalepa, G.J., Fairstein, R., Radulescu, R. (eds.) Proceedings of the 26th European Conference on Artificial Intelligence (ECAI 2023). Frontiers in Artificial Intelligence and Applications, vol. 372, pp. 453–460. IOS Press (2023)
Erdem, E., Gelfond, M., Leone, N.: Applications of ASP. AI Mag. 37(3), 53–68 (2016)
Gebser, M., et al.: Potassco User Guide, 2nd edn. University of Potsdam (2015). http://potassco.org
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Morgan and Claypool Publishers, San Rafael (2012)
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. Theory Pract. Logic Program. 19(1), 27–82 (2019)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference and Symposium of Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press (1988)
Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfiability: Computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009)
Haddadan, A., et al.: The complexity of dominating set reconfiguration. Theoret. Comput. Sci. 651, 37–49 (2016)
van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics 2013, London Mathematical Society Lecture Note Series, vol. 409, pp. 127–160. Cambridge University Press (2013)
Hirate, T., et al.: Hamiltonian cycle reconfiguration with answer set programming. In: Gaggl, S.A., Martinez, M.V., Ortiz, M. (eds.) JELIA 2023. LNCS, vol. 14281, pp. 262–277. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43619-2_19
Ito, T., et al.: On the complexity of reconfiguration problems. Theoret. Comput. Sci. 412(12–14), 1054–1065 (2011)
Ito, T., et al.: ZDD-based algorithmic framework for solving shortest reconfiguration problems. In: Ciré, A.A. (ed.) CPAIOR 2023. LNCS, vol. 13884, pp. 167–183. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33271-5_12
Ito, T., Ono, H., Otachi, Y.: Reconfiguration of cliques in a graph. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 212–223. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17142-5_19
Kaminski, M., Medvedev, P., Milanic, M.: Complexity of independent set reconfigurability problems. Theoret. Comput. Sci. 439, 9–15 (2012)
Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th European Conference on Artificial Intelligence (ECAI 1992), pp. 359–363 (1992)
Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration paths in the solution space of Boolean formulas. SIAM J. Discret. Math. 31(3), 2185–2200 (2017)
Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. Algorithmica 78(1), 274–297 (2017)
Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)
Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)
Soh, T., Okamoto, Y., Ito, T.: Core challenge 2022: Solver and graph descriptions. CoRR abs/2208.02495 (2022)
Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets. J. Comb. Optim. 32(4), 1182–1195 (2016)
Takaoka, A.: Complexity of hamiltonian cycle reconfiguration. Algorithms 11(9), 140 (2018)
Yamada, Y., Banbara, M., Inoue, K., Schaub, T.: Recongo: bounded combinatorial reconfiguration with answer set programming. In: Gaggl, S.A., Martinez, M.V., Ortiz, M. (eds.) JELIA 2023. LNCS, vol. 14281, pp. 278–286. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43619-2_20
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yamada, Y., Banbara, M., Inoue, K., Schaub, T., Uehara, R. (2024). Combinatorial Reconfiguration with Answer Set Programming: Algorithms, Encodings, and Empirical Analysis. In: Uehara, R., Yamanaka, K., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2024. Lecture Notes in Computer Science, vol 14549. Springer, Singapore. https://doi.org/10.1007/978-981-97-0566-5_18
Download citation
DOI: https://doi.org/10.1007/978-981-97-0566-5_18
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-0565-8
Online ISBN: 978-981-97-0566-5
eBook Packages: Computer ScienceComputer Science (R0)