Cluster-Based Video Summarization with Temporal Context Awareness | SpringerLink
Skip to main content

Cluster-Based Video Summarization with Temporal Context Awareness

  • Conference paper
  • First Online:
Image and Video Technology (PSIVT 2023)

Abstract

In this paper, we present TAC-SUM, a novel and efficient training-free approach for video summarization that addresses the limitations of existing cluster-based models by incorporating temporal context. Our method partitions the input video into temporally consecutive segments with clustering information, enabling the injection of temporal awareness into the clustering process, setting it apart from prior cluster-based summarization methods. The resulting temporal-aware clusters are then utilized to compute the final summary, using simple rules for keyframe selection and frame importance scoring. Experimental results on the SumMe dataset demonstrate the effectiveness of our proposed approach, outperforming existing unsupervised methods and achieving comparable performance to state-of-the-art supervised summarization techniques. Our source code is available for reference at https://github.com/hcmus-thesis-gulu/TAC-SUM.

H.-D. Huynh-Lam and N.-P. Ho-Thi—Both authors contributed equally to this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Apostolidis, E., Adamantidou, E., Metsai, A.I., Mezaris, V., Patras, I.: AC-SUM-GAN: connecting actor-critic and generative adversarial networks for unsupervised video summarization. IEEE Trans. Circuits Syst. Video Technol. 31(8), 3278–3292 (2020)

    Article  Google Scholar 

  2. Apostolidis, E., Adamantidou, E., Metsai, A.I., Mezaris, V., Patras, I.: Performance over random: a robust evaluation protocol for video summarization methods. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1056–1064 (2020)

    Google Scholar 

  3. Apostolidis, E., Adamantidou, E., Metsai, A.I., Mezaris, V., Patras, I.: Unsupervised video summarization via attention-driven adversarial learning. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11961, pp. 492–504. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37731-1_40

    Chapter  Google Scholar 

  4. Apostolidis, E., Adamantidou, E., Metsai, A.I., Mezaris, V., Patras, I.: Video summarization using deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  5. Apostolidis, E., Balaouras, G., Mezaris, V., Patras, I.: Combining global and local attention with positional encoding for video summarization. In: 2021 IEEE International Symposium on Multimedia (ISM), pp. 226–234 (2021)

    Google Scholar 

  6. Asadi, E., Charkari, N.M.: Video summarization using fuzzy C-means clustering. In: 20th Iranian Conference on Electrical Engineering (ICEE2012), pp. 690–694. IEEE (2012)

    Google Scholar 

  7. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  8. Chu, W.T., Liu, Y.H.: Spatiotemporal modeling and label distribution learning for video summarization. In: 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6. IEEE (2019)

    Google Scholar 

  9. De Avila, S.E.F., Lopes, A.P.B., da Luz Jr, A., de Albuquerque Araújo, A.: VSUMM: a mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recogn. Lett. 32(1), 56–68 (2011)

    Google Scholar 

  10. Fajtl, J., Sokeh, H.S., Argyriou, V., Monekosso, D., Remagnino, P.: Summarizing videos with attention. In: Carneiro, G., You, S. (eds.) ACCV 2018. LNCS, vol. 11367, pp. 39–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21074-8_4

    Chapter  Google Scholar 

  11. Gygli, M., Grabner, H., Riemenschneider, H., Van Gool, L.: Creating summaries from user videos. In: ECCV (2014)

    Google Scholar 

  12. He, X., et al.: Unsupervised video summarization with attentive conditional generative adversarial networks. In: Proceedings of the 27th ACM International Conference on multimedia, pp. 2296–2304 (2019)

    Google Scholar 

  13. Jung, Y., Cho, D., Kim, D., Woo, S., Kweon, I.S.: Discriminative feature learning for unsupervised video summarization. In: Proceedings of the AAAI Conference on artificial intelligence, vol. 33, pp. 8537–8544 (2019)

    Google Scholar 

  14. Jung, Y., Cho, D., Woo, S., Kweon, I.S.: Global-and-Local relative position embedding for unsupervised video summarization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 167–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_11

    Chapter  Google Scholar 

  15. Li, P., Ye, Q., Zhang, L., Yuan, L., Xu, X., Shao, L.: Exploring global diverse attention via pairwise temporal relation for video summarization. Pattern Recogn. 111, 107677 (2021)

    Article  Google Scholar 

  16. Liu, Y.T., Li, Y.J., Yang, F.E., Chen, S.F., Wang, Y.C.F.: Learning hierarchical self-attention for video summarization. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 3377–3381. IEEE (2019)

    Google Scholar 

  17. Mahasseni, B., Lam, M., Todorovic, S.: Unsupervised video summarization with adversarial LSTM networks. In: CVPR (2017)

    Google Scholar 

  18. Mahmoud, K.M., Ghanem, N.M., Ismail, M.A.: Unsupervised video summarization via dynamic modeling-based hierarchical clustering. In: Proceedings of the 12th International Conference on Machine Learning and Applications, vol. 2, pp. 303–308 (2013)

    Google Scholar 

  19. Mahmoud, K.M., Ismail, M.A., Ghanem, N.M.: VSCAN: an enhanced video summarization using density-based spatial clustering. In: Petrosino, A. (ed.) ICIAP 2013. LNCS, vol. 8156, pp. 733–742. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41181-6_74

    Chapter  Google Scholar 

  20. Mundur, P., Rao, Y., Yesha, Y.: Keyframe-based video summarization using Delaunay clustering. Int. J. Digit. Libr. 6, 219–232 (2006)

    Article  Google Scholar 

  21. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  22. Rochan, M., Ye, L., Wang, Y.: Video summarization using fully convolutional sequence networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 347–363 (2018)

    Google Scholar 

  23. Shroff, N., Turaga, P., Chellappa, R.: Video précis: highlighting diverse aspects of videos. IEEE Trans. Multimedia 12(8), 853–868 (2010)

    Article  Google Scholar 

  24. Wang, J., Wang, W., Wang, Z., Wang, L., Feng, D., Tan, T.: Stacked memory network for video summarization. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 836–844 (2019)

    Google Scholar 

  25. Zhang, K., Chao, W.-L., Sha, F., Grauman, K.: Video summarization with long short-term memory. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 766–782. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_47

    Chapter  Google Scholar 

  26. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. SIGMOD Rec. 25(2), 103–114 (1996). https://doi.org/10.1145/235968.233324

  27. Zhao, B., Li, X., Lu, X.: Hierarchical recurrent neural network for video summarization. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 863–871 (2017)

    Google Scholar 

  28. Zhao, B., Li, X., Lu, X.: HSA-RNN: hierarchical structure-adaptive RNN for video summarization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7405–7414 (2018)

    Google Scholar 

  29. Zhao, B., Li, X., Lu, X.: TTH-RNN: tensor-train hierarchical recurrent neural network for video summarization. IEEE Trans. Industr. Electron. 68(4), 3629–3637 (2020)

    Article  Google Scholar 

  30. Zhou, K., Qiao, Y., Xiang, T.: Deep reinforcement learning for unsupervised video summarization with diversity-representativeness reward. In: AAAI (2018)

    Google Scholar 

Download references

Acknowledgement

This research is supported by research funding from Faculty of Information Technology, University of Science, Vietnam National University - Ho Chi Minh City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc-Phuong Ho-Thi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huynh-Lam, HD., Ho-Thi, NP., Tran, MT., Le, TN. (2024). Cluster-Based Video Summarization with Temporal Context Awareness. In: Yan, W.Q., Nguyen, M., Nand, P., Li, X. (eds) Image and Video Technology. PSIVT 2023. Lecture Notes in Computer Science, vol 14403. Springer, Singapore. https://doi.org/10.1007/978-981-97-0376-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0376-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0375-3

  • Online ISBN: 978-981-97-0376-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics