RETRACTED CHAPTER: Data Mining to Identify Risk Factors Associated with University Students Dropout | SpringerLink
Skip to main content

RETRACTED CHAPTER: Data Mining to Identify Risk Factors Associated with University Students Dropout

  • Conference paper
  • First Online:
Data Mining and Big Data (DMBD 2019)

Abstract

This paper presents the identification of university students dropout patterns by means of data mining techniques. The database consists of a series of questionnaires and interviews to students from several universities in Colombia. The information was processed by the Weka software following the Knowledge Extraction Process methodology with the purpose of facilitating the interpretation of results and finding useful knowledge about the students. The partial results of data mining processing on the information about the generations of students of Industrial Engineering from 2016 to 2018 are analyzed and discussed, finding relationships between family, economic, and academic issues that indicate a probable desertion risk in students with common behaviors. These relationships provide enough and appropriate information for the decision-making process in the treatment of university dropout.

The Editors have retracted this conference paper [1] because it contains material that substantially overlaps with content translated from another article by different authors [2]. The authors Jesús Silva, Alex Castro Sarmiento, Hugo Hernández P., and Ligia Romero agree to this retraction, the authors Nicolás María Santodomingo, Norka Márquez Blanco, Wilmer Cadavid Basto, Jorge Navarro Beltrán, and Juan de la Hoz Hernández have not responded to any correspondence from the editor/publisher about this retraction.

[1] Silva, Jesús, et al. “Data Mining to Identify Risk Factors Associated with University Students Dropout.” International Conference on Data Mining and Big Data. Springer, Singapore, 2019. https://doi.org/10.1007/978-981-32-9563-6_5

[2] Reyes-Nava, A., et al. “Minería de datos aplicada para la identificación de factores de riesgo en alumnos.” Res. Comput. Sci. 139 (2017): 177–189. http://dx.doi.org/10.13053/rcs-139-1-14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 08 April 2021

    The Editors have retracted this conference paper [1] because it contains material that substantially overlaps with content translated from another article by different authors [2]. The authors Jesús Silva, Alex Castro Sarmiento, Hugo Hernández P., and Ligia Romero agree to this retraction, the authors Nicolás María Santodomingo, Norka Márquez Blanco, Wilmer Cadavid Basto, Jorge Navarro Beltrán, and Juan de la Hoz Hernández have not responded to any correspondence from the editor/publisher about this retraction.

References

  1. Caicedo, E.J.C., Guerrero, S., López, D.: Propuesta para la construcción de un índice socioeconómico para los estudiantes que presentan las pruebas Saber Pro. Comunicaciones en Estadística 9(1), 93–106 (2016)

    Google Scholar 

  2. Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web visibility profiles of top100 latin american universities. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 254–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93803-5_24

    Chapter  Google Scholar 

  3. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50(1), 159–175 (2003)

    Article  Google Scholar 

  4. Duan, L., Xu, L., Liu, Y., Lee, J.: Cluster-based outlier detection. Ann. Oper. Res. 168(1), 151–168 (2009)

    Article  MathSciNet  Google Scholar 

  5. Haykin, S.: Neural Networks a Comprehensive Foundation, 2nd edn. Macmillan College Publishing, Inc. USA (1999). ISBN 9780023527616

    Google Scholar 

  6. Haykin, S.: Neural Networks and Learning Machines. Prentice Hall International, New Jersey (2009)

    Google Scholar 

  7. Abhay, K.A., Badal, N.A.: Novel approach for intelligent distribution of data warehouses. Egypt. Inf. J. 17(1), 147–159 (2015)

    Google Scholar 

  8. Aguado-López, E., Rogel-Salazar, R., Becerril-García, A., Baca-Zapata, G.: Presencia de universidades en la Red: La brecha digital entre Estados Unidos y el resto del mundo. Revista de Universidad y Sociedad del Conocimiento 6(1), 1–17 (2009)

    Google Scholar 

  9. Bontempi, G., Ben Taieb, S., Le Borgne, Y.-A.: Machine learning strategies for time series forecasting. In: Aufaure, M.-A., Zimányi, E. (eds.) eBISS 2012. LNBIP, vol. 138, pp. 62–77. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36318-4_3

    Chapter  Google Scholar 

  10. Isasi, P., Galván, I.: Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson (2004). ISBN 8420540250

    Google Scholar 

  11. Kulkarni, S., Haidar, I.: Forecasting model for crude oil price using artificial neural networks and commodity future prices. Int. J. Comput. Sci. Inf. Secur. 2(1), 81–89 (2009)

    Google Scholar 

  12. Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Designing data warehouses: from business requirement analysis to multidimensional modeling. In: Proceedings of the 1st International Workshop on Requirements Engineering for Business Need and IT Alignment, Paris, France (2005)

    Google Scholar 

  13. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: a tutorial. IEEE Comput. 29(3), 1–32 (1996)

    Article  Google Scholar 

  14. Kuan, C.M.: Artificial neural networks. In: Durlauf, S.N., Blume, L.E. (eds.) The New Palgrave Dictionary of Economics. Palgrave Macmillan, Basingstoke (2008)

    Google Scholar 

  15. Mombeini, H., Yazdani-Chamzini, A.: Modelling gold price via artificial neural network. J. Econ. Bus. Manag. 3(7), 699–703 (2015)

    Article  Google Scholar 

  16. Parthasarathy, S., Zaki, M.J., Ogihara, M.: Parallel data mining for association rules on shared-memory systems. Knowl. Inf. Syst. Int. J. 3(1), 1–29 (2001)

    Article  Google Scholar 

  17. Sekmen, F., Kurkcu, M.: An early warning system for Turkey: the forecasting of economic crisis by using the artificial neural networks. Asian Econ. Financ. Rev. 4(1), 529–543 (2014)

    Google Scholar 

  18. Sevim, C., Oztekin, A., Bali, O., Gumus, S., Guresen, E.: Developing an early warning system to predict currency crises. Eur. J. Oper. Res. 237(1), 1095–1104 (2014)

    Article  Google Scholar 

  19. Singhal, D., Swarup, K.S.: Electricity price forecasting using artificial neural networks. IJEPE 33(1), 550–555 (2011)

    Google Scholar 

  20. Vasquez, C., Torres, M., Viloria, A.: Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J. Eng. Appl. Sci. 12(11), 2963–2965 (2017)

    Google Scholar 

  21. Vásquez, C., et al.: Cluster of the latin american universities top100 according to webometrics 2017. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 276–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93803-5_26

    Chapter  Google Scholar 

  22. Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching – learning process through knowledge data discovery (big data). In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 670–679. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93803-5_63

    Chapter  Google Scholar 

  23. Prodromidis, A., Chan, P.K., Stolfo, S.J.: Meta learning in distributed data mining systems: Issues and approaches. In: Kargupta, H., Chan, P. (eds.) Book on Advances in Distributed and Parallel Knowledge Discovery. AAAI/MIT Press (2000)

    Google Scholar 

  24. Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for data mining association rules in large databases. In: Proceedings of 21st Very Large Data Base Conference, vol. 5, no. 1, pp. 432– 444 (1995)

    Google Scholar 

  25. Stolfo, S., Prodromidis, A.L., Tselepis, S., Lee, W., Fan, D.W.: Java agents for metalearning over distributed databases. In: Proceedings of 3rd International Conference on Knowledge Discovery and Data Mining, vol. 5, no. 2, pp. 74–81 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, J. et al. (2019). RETRACTED CHAPTER: Data Mining to Identify Risk Factors Associated with University Students Dropout. In: Tan, Y., Shi, Y. (eds) Data Mining and Big Data. DMBD 2019. Communications in Computer and Information Science, vol 1071. Springer, Singapore. https://doi.org/10.1007/978-981-32-9563-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9563-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9562-9

  • Online ISBN: 978-981-32-9563-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics