Attentive Relational State Representation for Intelligent Joint Operation Simulation | SpringerLink
Skip to main content

Attentive Relational State Representation for Intelligent Joint Operation Simulation

  • Conference paper
  • First Online:
Data Mining and Big Data (DMBD 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1744))

Included in the following conference series:

  • 617 Accesses

Abstract

In the multi-agent task, due to the constant changes in the location and state of each agent, the information considered by each agent when making decisions is also constantly changing. This makes it difficult to model cooperatively among agents. Previous methods mainly used average embedding to model feature aggregation. However, this aggregation has the problem of losing permutation invariance or excessive information loss. The feature aggregation method based on attentive relational state representation establishes an insensitive state representation to permutation and problem scale. In our experiments on Intelligent Joint Operation Simulation, experimental results show that attentive relational state representation improves the baseline performance.

This work is supported by Science and Technology Innovation 2030 - New Generation Artificial Intelligence Major Project (Grant No.: 2018AAA0102301), partially supported by Basic Theory Research Foundation of The Science and Technology Commission of the Central Military Commission and the National Natural Science Foundation of China (Grant No. 62076010 and 62276008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albrecht, S.V., Stone, P.: Autonomous agents modelling other agents: a comprehensive survey and open problems. Artif. Intell. 258, 66–95 (2018)

    Article  MATH  Google Scholar 

  2. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentralized control of Markov decision processes. Math. Oper. Res. 27(4), 819–840 (2002)

    Article  MATH  Google Scholar 

  3. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. arXiv preprint arXiv:1301.7363 (2013)

  4. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 38(2), 156–172 (2008)

    Google Scholar 

  5. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative multiagent systems. AAAI/IAAI 1998(746–752), 2 (1998)

    Google Scholar 

  6. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent policy gradients. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  7. Guestrin, C., Lagoudakis, M., Parr, R.: Coordinated reinforcement learning. In: ICML, vol. 2, pp. 227–234. Citeseer (2002)

    Google Scholar 

  8. Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using deep reinforcement learning. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10642, pp. 66–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71682-4_5

    Chapter  Google Scholar 

  9. Hüttenrauch, M., Adrian, S., Neumann, G., et al.: Deep reinforcement learning for swarm systems. J. Mach. Learn. Res. 20(54), 1–31 (2019)

    MATH  Google Scholar 

  10. Li, W.: Notion of control-law module and modular framework of cooperative transportation using multiple nonholonomic robotic agents with physical rigid-formation-motion constraints. IEEE Trans. Cybern. 46(5), 1242–1248 (2015)

    Article  Google Scholar 

  11. Lowe, R., Wu, Y.I., Tamar, A., Harb, J., Pieter Abbeel, O., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  12. Mao, H., Gong, Z., Ni, Y., Xiao, Z.: ACCNet: actor-coordinator-critic net for “learning-to-communicate” with deep multi-agent reinforcement learning. arXiv preprint arXiv:1706.03235 (2017)

  13. Oliehoek, F.A., Amato, C.: A Concise Introduction to Decentralized POMDPs. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28929-8

    Book  MATH  Google Scholar 

  14. Omidshafiei, S., Pazis, J., Amato, C., How, J.P., Vian, J.: Deep decentralized multi-task multi-agent reinforcement learning under partial observability. In: International Conference on Machine Learning, pp. 2681–2690. PMLR (2017)

    Google Scholar 

  15. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy optimization. In: International Conference on Machine Learning, pp. 1889–1897. PMLR (2015)

    Google Scholar 

  16. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  17. Shoham, Y., Powers, R., Grenager, T.: If multi-agent learning is the answer, what is the question? Artif. Intell. 171(7), 365–377 (2007)

    Article  MATH  Google Scholar 

  18. Su, S., Lin, Z., Garcia, A.: Distributed synchronization control of multiagent systems with unknown nonlinearities. IEEE Trans. Cybern. 46(1), 325–338 (2015)

    Article  Google Scholar 

  19. Sukhbaatar, S., Fergus, R., et al.: Learning multiagent communication with backpropagation. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  20. Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296 (2017)

  21. Tan, T., Bao, F., Deng, Y., Jin, A., Dai, Q., Wang, J.: Cooperative deep reinforcement learning for large-scale traffic grid signal control. IEEE Trans. Cybern. 50(6), 2687–2700 (2019)

    Article  Google Scholar 

  22. Tan, Y., Zheng, Z.Y.: Research advance in swarm robotics. Defence Technol. 9(1), 18–39 (2013)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  24. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  25. Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., Wang, J.: Mean field multi-agent reinforcement learning. In: International Conference on Machine Learning, pp. 5571–5580. PMLR (2018)

    Google Scholar 

  26. Zhang, K., Yang, Z., Liu, H., Zhang, T., Basar, T.: Fully decentralized multi-agent reinforcement learning with networked agents. In: International Conference on Machine Learning, pp. 5872–5881. PMLR (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoqiu Zheng or Ying Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, R., Ye, L., Zheng, S., Wang, Y., Cui, P., Tan, Y. (2022). Attentive Relational State Representation for Intelligent Joint Operation Simulation. In: Tan, Y., Shi, Y. (eds) Data Mining and Big Data. DMBD 2022. Communications in Computer and Information Science, vol 1744. Springer, Singapore. https://doi.org/10.1007/978-981-19-9297-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9297-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9296-4

  • Online ISBN: 978-981-19-9297-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics