Abstract
Neural Architecture Search (NAS) forms powerful automatic learning, which has helped achieve remarkable performance in several applications in recent years. Previous research focused on NAS in standard supervised learning to explore its performance, requiring labeled data. In this paper, our goal is to examine the implementation of NAS with large amounts of unlabeled data. We propose the NAS as a self-assessor, called NAS-SA, by adding the consistency method and prior knowledge. We design an adaptive search strategy, a balanced search space, and a multi-object optimization to generate a robust and efficient small model in NAS-SA. The image and text classification tasks proved that our NAS-SA method had achieved the best performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) Symposium on Operating Systems Design and Implementation (\(\{\)OSDI\(\}\) 2016), pp. 265–283 (2016)
Bender, G., Kindermans, P.J., Zoph, B., Vasudevan, V., Le, Q.: Understanding and simplifying one-shot architecture search. In: International Conference on Machine Learning, pp. 550–559 (2018)
Brock, A., Lim, T., Ritchie, J.M., Weston, N.J.: Smash: one-shot model architecture search through hypernetworks. In: 6th International Conference on Learning Representations (2018)
Chen, X., Hsieh, C.J.: Stabilizing differentiable architecture search via perturbation-based regularization. In: International Conference on Machine Learning, pp. 1554–1565. PMLR (2020)
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical data augmentation with no separate search. arXiv preprint arXiv:1909.13719 2(3) (2019)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186 (2019)
Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. Statistics 1050, 9 (2015)
Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)
Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Kuo, C.-W., Ma, C.-Y., Huang, J.-B., Kira, Z.: FeatMatch: feature-based augmentation for semi-supervised learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 479–495. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_28
Liu, C., Dollár, P., He, K., Girshick, R., Yuille, A., Xie, S.: Are labels necessary for neural architecture search? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 798–813. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_46
Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. arXiv preprint arXiv:1711.00436 (2017)
Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)
Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture search via parameters sharing. In: International Conference on Machine Learning, pp. 4095–4104. PMLR (2018)
Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4780–4789 (2019)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Sennrich, R., Haddow, B., Birch, A.: Improving neural machine translation models with monolingual data. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (vol. 1: Long Papers), pp. 86–96 (2016)
Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017)
Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems 33 (2020)
Strubell, E., Verga, P., Belanger, D., McCallum, A.: Fast and accurate entity recognition with iterated dilated convolutions. In: EMNLP (2017)
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 4278–4284 (2017)
Tan, M., et al.: Mnasnet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)
Tang, Y., et al.: A semi-supervised assessor of neural architectures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1810–1819 (2020)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Vieira, J.P.A., Moura, R.S.: An analysis of convolutional neural networks for sentence classification. In: 2017 XLIII Latin American Computer Conference (CLEI), pp. 1–5. IEEE (2017)
Wan, A., et al.: FBNetV2: differentiable neural architecture search for spatial and channel dimensions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12965–12974 (2020)
Wei, J., Zou, K.: EDA: easy data augmentation techniques for boosting performance on text classification tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 6383–6389 (2019)
Xue, C., Yan, J., Yan, R., Chu, S.M., Hu, Y., Lin, Y.: Transferable automl by model sharing over grouped datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9002–9011 (2019)
Yan, S., Zheng, Y., Ao, W., Zeng, X., Zhang, M.: Does unsupervised architecture representation learning help neural architecture search? In: Advances in Neural Information Processing Systems 33 (2020)
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. Adv. Neural. Inf. Process. Syst. 32, 5753–5763 (2019)
Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-bench-101: towards reproducible neural architecture search. In: International Conference on Machine Learning, pp. 7105–7114. PMLR (2019)
Zhou, T., Wang, S., Bilmes, J.: Time-consistent self-supervision for semi-supervised learning. In: International Conference on Machine Learning, pp. 11523–11533. PMLR (2020)
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)
Acknowledgement
This work is supported by National Key Research and Development Program of China under grant No. 2018YFB0204403, No. 2017YFB1401202 and No. 2018YFB1003500.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Hong, Z., Wang, J., Qu, X., Zhao, C., Liu, J., Xiao, J. (2022). Neural Architecture Search as Self-assessor in Semi-supervised Learning. In: Liao, X., et al. Big Data. BigData 2021. Communications in Computer and Information Science, vol 1496. Springer, Singapore. https://doi.org/10.1007/978-981-16-9709-8_7
Download citation
DOI: https://doi.org/10.1007/978-981-16-9709-8_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-9708-1
Online ISBN: 978-981-16-9709-8
eBook Packages: Computer ScienceComputer Science (R0)