Abstract
Computer-aided detection and segmentation of polyps present inside colon are quite challenging due to the large variations of polyps in features like shape, texture, size, and color, and the presence of various polyp-like structures during colonoscopy. In this paper, we apply a mask region-based convolutional neural network (Mask R-CNN) approach for the detection and segmentation of polyps in the images obtained from colonoscopy videos. We propose an efficient method to reduce the false positives in the computer-aided detection system. To achieve this, we rigorously train our model by selecting non-polyp regions in the image which have high probability of getting detected as a polyp. Using two colonoscopic frame datasets, we demonstrate the experimental results that show the significant reduction in the number of false positives by adding selected regions in our computer-aided polyp segmentation system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clinicians (2021). https://doi.org/10.3322/caac.21660, https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21660
Cancer.net webpage. https://cancer.net/cancer-types/colorectal-cancer/stages. Last accessed 15 Mar 2021
Leufkens, A., van Oijen, M.G.H., Vleggaar, F., Siersema, P.: Factors influencing the miss rate of polyps in a back-to-back colonoscopy study. Endoscopy 44(5), 470–475 (2012). https://doi.org/10.1055/s-0031-1291666
Alexandre, L.A., Nobre, N., Casteleiro, J.: Color and position versus texture features for endoscopic polyp detection. In: 2008 International Conference on BioMedical Engineering and Informatics, vol. 2, pp. 38–42 (2008). https://doi.org/10.1109/BMEI.2008.246
Bernal, J., Tajkbaksh, N., Sánchez, F.J., Matuszewski, B.J., Chen, H., Yu, L., Angermann, Q., Romain, O., Rustad, B., Balasingham, I., Pogorelov, K., Choi, S., Debard, Q., Maier-Hein, L., Speidel, S., Stoyanov, D., Brandao, P., Córdova, H., Sánchez-Montes, C., Gurudu, S.R., Fernández-Esparrach, G., Dray, X., Liang, J., Histace, A.: Comparative validation of polyp detection methods in video colonoscopy: results from the miccai 2015 endoscopic vision challenge. IEEE Trans. Med. Imaging 36(6), 1231–1249 (2017). https://doi.org/10.1109/TMI.2017.2664042
Iakovidis, D.K., Maroulis, D.E., Karkanis, S.A.: An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy. Comput. Biol. Med. 36(10), 1084–1103 (2006). https://doi.org/10.1016/j.compbiomed.2005.09.008, https://www.sciencedirect.com/science/article/pii/S0010482505000983, Intelligent Technologies in Medicine and Bioinformatics
Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630–644 (2016). https://doi.org/10.1109/TMI.2015.2487997
Hasan, M.M., Islam, N., Rahman, M.M.: Gastrointestinal polyp detection through a fusion of contourlet transform and neural features. J. King Saud Univ.-Comput. Information Sci. (2020)
Shin, Y., Qadir, H.A., Aabakken, L., Bergsland, J., Balasingham, I.: Automatic colon polyp detection using region based deep CNN and post learning approaches. CoRR abs/1906.11463 (2019). https://doi.org/10.1109/ACCESS.2018.2856402, http://arxiv.org/abs/1906.11463
Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Integrating online and offline 3d deep learning for automated polyp detection in colonoscopy videos. IEEE J. Biomed. Health Informatics PP. 1–1 (12 2016). https://doi.org/10.1109/JBHI.2016.2637004
Liu, M., Jiang, J., Wang, Z.: Colonic polyp detection in endoscopic videos with single shot detection based deep convolutional neural network. IEEE Access 7, 75058–75066 (2019). https://doi.org/10.1109/ACCESS.2019.2921027
Cvc-clinic db. https://polyp.grand-challenge.org/CVCClinicDB/. Last accessed 15 Jan 2021
Etis-larib db. //polyp.grand-challenge.org/EtisLarib/. Last accessed 15 Jan 2021
He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. CoRR abs/1703.06870 (2017). http://arxiv.org/abs/1703.06870
Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497 (2015). http://arxiv.org/abs/1506.01497
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385
Lin, T.Y., Maire, M., Belongie, S.J., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects in context. In: ECCV (2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Jha, S., Jagtap, B., Mazumdar, S., Sinha, S. (2022). Computer-Aided Segmentation of Polyps Using Mask R-CNN and Approach to Reduce False Positives. In: Satapathy, S.C., Peer, P., Tang, J., Bhateja, V., Ghosh, A. (eds) Intelligent Data Engineering and Analytics. Smart Innovation, Systems and Technologies, vol 266. Springer, Singapore. https://doi.org/10.1007/978-981-16-6624-7_10
Download citation
DOI: https://doi.org/10.1007/978-981-16-6624-7_10
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-6623-0
Online ISBN: 978-981-16-6624-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)